German Researchers Discover Plastic-Eating Bacteria

,

Researchers in Germany recently published a research paper in Frontiers in Microbiology in which they describe the isolating a strain of bacteria that can degrade plastic.  The specific bacteria Pseudomonas sp. were able to biodegrade polyurethanes.  The plastic, specifically polyurethane, served as the sole source of carbon and energy for the bacteria.

Due to the variety in physical, chemical, thermal and mechanical properties, polyurethanes (PU)have a broad range of applications, Some of the main applications are detailed below:
• Flexible PUF: automobile seating, furniture, carpets.
• Rigid PUF: refrigerator, insulation board.
• Elastomers: footwear, adhesives, medical.
• RIM: automobiles (bumpers, side panels).
• Other: carpets, casting, sealants.

As PUs are used in so many every day applications and industrial uses, they enter the municipal solid waste stream, usually by way of discarded consumer and industrial products. These products frequently are durable goods with a long lifespan such as upholstered furniture, mattresses and automobile parts. By weight, approximately 1.3 million tons of waste PUs are generated each year in the USA alone. The largest market is for PUF (47% flexible and 28% rigid), followed by PU elastomers (8%).  North America represents around 30–35% of the world total consumption, with the remainder in Western Europe (around 40%), the Far East (around 15%) and the rest of the world (around 10–15%).

Polyurethanes, due to there diverse chemical composition, are very difficult to recycle.  Due to their high flammability, they are typically treated with flame retardants that may be carcinogenic.

“The bacteria can use these compounds as a sole source of carbon, nitrogen and energy,” says microbiologist Hermann Heipieper, from the Helmholtz Centre for Environmental Research-UFZ in Germany. “This finding represents an important step in being able to reuse hard-to-recycle PU products.”

The discovery was made in the soil underneath a waste site containing an abundance of brittle plastics. Having spotted the strain, the scientists ran a genomic analysis and other experiments to work out the bacterium’s capabilities.  It will be some time before there is a commercial-scale bacteria-based solution to plastic waste challenge.

Canadian Research

In Canada, researchers from the University of British Columbia and industry partner Polymer Research Technologies are working together to develop technology that will allow polyurethane foam waste to be chemically recycled into polyols.  If successful, the research will lead to a commercial-scale process that can produce a reusable, recyclable, economical, and eco-friendly raw material alternative to petroleum-based virgin polyol.

 

Jet fuel production from waste plastics

,

Researchers from Washington State University (WSU) recently published a paper in the Journal Advanced Energy in which they describe a research study they conducted turning waste plastics to jet fuel through catalytic pyrolysis with activated carbons.

WSU’s Dr. Hanwu Lei and colleagues melted plastic waste at high temperature with activated carbon, a processed carbon with increased surface area, to produce jet fuel.

“Waste plastic is a huge problem worldwide,” said Lei, an associate professor in WSU’s Department of Biological System Engineering. “This is a very good, and relatively simple, way to recycle these plastics.”

How it works

In the experiment, Lei and colleagues tested low-density polyethylene and mixed a variety of waste plastic products, like water bottles, milk bottles, and plastic bags, and ground them down to around three millimeters, or about the size of a grain of rice.

The plastic granules were then placed on top of activated carbon in a tube reactor at a high temperature, ranging from 430 degree Celsius to 571 degrees Celsius. The carbon is a catalyst; a substance that speeds up a chemical reaction without being consumed by the reaction.

“Plastic is hard to break down,” Lei said. “You have to add a catalyst to help break the chemical bonds. There is a lot of hydrogen in plastics, which is a key component in fuel.”

Once the carbon catalyst has done its work, it can be separated out and re-used on the next batch of waste plastic conversion. The catalyst can also be regenerated after losing its activity.

After testing several different catalysts at different temperatures, the best result they had produced a mixture of 85 percent jet fuel and 15 percent diesel fuel.

Environmental impact

If operated at a commercial scale, the process would go a long way to addressing the world’s plastic waste problems. Not only would this new process reduce that waste, very little of what is produced is wasted.

The pyrolysis process itself is considered to have low environmental impacts as it does not involve the combustion of plastic which subsequently requires the air pollutants to be treated.

“We can recover almost 100 percent of the energy from the plastic we tested,” Lei said. “The fuel is very good quality, and the byproduct gasses produced are high quality and useful as well.”

He also said the method for this process is easily scalable. It could work at a large facility or even on farms, where farmers could turn plastic waste into diesel.

“You have to separate the resulting product to get jet fuel,” Lei said. “If you don’t separate it, then it’s all diesel fuel.”

This work was funded under program initiated by the United States Department of Agriculture.

Separating fact from fiction – are we really only recycling 9% of plastics?

,

Written by Calvin Lakhan, Ph.D, Faculty of Environmental Studies at York University

It seems like everywhere I turn, I see the headline “Canada only recycles 9% of its plastics” – this figure, taken from a report prepared by Deloitte for Environment and Climate Change Canada, has now become the focal point of both those within the industry and the general public alike.

For a country that prides itself on being environmentally conscious and engaged, can we really be doing that badly?

I want to start this post off by saying that I will readily admit to not knowing what % of plastics are recycled in Canada (or anywhere else for that matter). However, I would venture to say that nobody knows, and we should be cautious about taking any estimate at face value without fully understanding the methodology and limitations used to arrive at that figure.

How do we calculate a recycling rate?

For those of you well versed in the subject, feel free to skip ahead. However, it is important to understand how exactly recycling rates are calculated. At a high level, a recycling rate is total tonnes of waste recycled divided by total tonnes of waste generated. This seems simple enough, but this grade school arithmetic actually involves a tremendous amount of modeling, assumptions, and to be perfectly blunt, guess work.

Solid waste diversion and disposal, Canada, 2002 to 2016
(Source: Government of Canada)

Total Tonnes Recycled (The Numerator)

First, let’s consider the numerator in the equation – total tonnes of plastics recycled. For certain jurisdictions, (i.e. Ontario, British Columbia, Quebec etc.), total tonnes of residential plastics recycled is tracked by municipalities (using total tonnes of material marketed), who then subsequently report those figures to a provincial body. These figures are then summed and aggregated, to arrive at a figure for total tonnes of residential plastics recycled.

Generally speaking, tracking recycled tonnes for residential recycling programs is fairly straightforward, as these are actual measurements being reported by collectors. This sounds simple – until we are asked to determine total tonnes recycled by the IC&I (industrial, commercial and institutional) sector. The vast majority of all waste generated in Canada comes from the IC&I sector – by comparison, it is estimated that the residential waste stream makes up less than 20% of the overall waste stream.

As noted in a previous post, data surrounding plastics generation/recovery in the IC&I sector remains extremely poor, with little consensus regarding who is generating plastics waste, how much is being generated, and how much is being diverted.

The IC&I sectors consist of a range of establishments, including: malls, office buildings, construction and demolition sites, restaurants, hotels, hospitals, educational institutions, manufacturing plants, and multi-residential buildings.

Previous attempts to model IC&I recycling rates have ranged widely, with plastic diversion rates ranging from as little as 10% to as much as 80% depending on the sector and what actually constitutes diversion activity. The reason for this widely ranging disparity is that there is no formal legislative requirement for the majority of the IC&I sector to report the quantities or types of waste being generated, diverted or disposed to provincial authorities.

In Ontario for example, only large IC&I establishments are regulated under existing legislation (which requires establishments to have a formal waste diversion plan and conduct waste audits). However, it is estimated than 80% of waste generated from the IC&I sector comes from small and medium sized establishments, and thus, fall outside the purview of existing regulation. This issue is exacerbated in other provinces which have no formal legislation that monitors the IC&I sector, and relies on voluntary reporting to keep track of waste generation data.

In short, the majority of the plastic waste being generated across Canada is not being tracked – which makes the figures reported by Deloitte all the more curious.

As an intellectual exercise, think about your average food court for a moment and how much packaging waste is being generated (both recyclable and unrecyclable). Are shoppers putting all their papers in the recycling bin? Oops, somebody with a half full drink tossed it in and ruined the material. How many plastic forks, knives and straws are being handed out? Did the person taking out the trash really just put all the recyclables and garbage in the same bag? Variations of this chaotic scene plays out every day, all over the country, and somehow, I am supposed to believe that this is being tracked by the owners of establishments?

One of the reasons why legislation for the IC&I sector has been so challenging in Ontario (and nationally) is due to the poor quality of the data. Whatever estimates do exist, have largely been based on a relatively small sample of waste audits, and modeled using a combination of waste generated per employee estimates (by sector and by NAICS code). If this sounds confusing, it is – at no point have we ever been able to credibly quantify the total tonnes of material recycled for both the residential and IC&I sectors. At best, we are making educated guesses, and at worse, we are producing inaccurate estimates based on a flawed methodology.

In short, the majority of the plastic waste being recycled across Canada is not being tracked – however, this does not necessarily mean that this material is ending up in landfills.

On site recovery, reuse and recycling

Despite the fact that there is very little formal data for plastics waste that is being tracked, many IC&I generators (particularly in the industrial and manufacturing sector), rely on on-site waste management programs to reuse and recycle plastic waste. True to the spirit of a circular economy, many producers use plastic waste outputs from one part of their production process, as inputs for the next. Anecdotally, many producers claim diversion rates close to 100%, as any material of value is reused, recycled or reprocessed internally. It is estimated that more than 50% of all IC&I material being generated is managed using on-site options. While this makes sense intuitively, it is difficult to gather any firm data regarding the quantities or scale of on-site material management for plastics. As noted previously, existing legislation does not require this information to be reported, and as such, any data that is available is left to the discretion of private companies and associations to share publicly.

Previous attempts to gather this data (most recently by the Ontario MOECC in the IC&I Review conducted in 2014) was met with resistance from the IC&I sector, who claimed administrative burden and commercial sensitivity in collecting and sharing this data.

Total Tonnes Generated (the Denominator)

I could probably stop here having made the point that we are working with insufficient data – however, I am also writing this article so that people can fully appreciate what goes into calculating a recycling rate, as very few ever stop to ask how we come up with our numbers.

With that being, I now turn my attention to the denominator in the equation – total plastic waste generated. Unlike total tonnes recycled, which is something that can be measured and recorded using a weigh scale at a material recycling facility, total plastic waste generated is an entirely modeled number. For the residential recycling sector (Blue Box), producers of packaging are asked to report their unit sales into a given market, and generation rates for households are modeled using a series of assumptions based on population density, locality, urban/rural split etc. I have worked in this space for the better part of a decade, and I still could not tell you what exactly goes into the waste generation model used for printed paper and packaging.

Turning our attention back to the IC&I sector, there is no formal requirement for any establishment to report how much of a particular plastic waste they have generated into a market every year. Unlike printed paper and packaging, we cannot assume that unit sales is a proxy for waste generation, as many plastics are durable goods. To use a very simple example, a company may sell 1000 tonnes of plastic lumber into a market every year, but that doesn’t mean all 1000 tonnes will reach end of life during that period.

To accurately model the quantities of plastics needing to be managed at end of life, we would need to know its life expectancy, composition, primary and secondary use etc. To make a very long story short, you would almost need to do a mass balance of all plastics before we could credibly estimate overall generation. Simply put – we do not have that information, and even if it could accurately monitored and tracked, there is no legislative requirement for plastic producers to share that information.

Is “Ball Parking” good enough?

The exact findings from the Deloitte report said:

3.2 million metric tonnes ended up as garbage, 86 per cent went to landfill, 4 per cent to incinerators and 1 per cent — 29,000 metric tonnes — ended up as litter which can contaminate lakes and oceans. Most of the wasted plastic comes from offices, institutions or industries.

To be quite frank, I do not think the above numbers are accurate – however, does that really matter? I suppose that depends on what we are trying to achieve. If the purpose is to highlight that a significant percentage of our plastics is ending up in a landfill, necessitating immediate corrective action, then I am all for it. Communicating the size and scale of the problem is of greater importance than precision.

However, if our intent is to develop policy and legislation, particularly with respect to asking producers to pay for end of life costs associated with managing plastics at end of life, then we have to press pause.

Solid waste diversion rate by source, Canada, 2002 to 2016
(Source: Environment Canada)

Developing a data acquisition strategy

Identifying stakeholders who may have access and be willing to share sector specific data with respect to plastics generation/recycling/diversion will be critical in fully understanding the size and scope of the issue. It is only possible to achieve “Zero plastic waste” if we can understand how much is being generated, and what is presently happening to it.

Potential sources for this data include individual producers, industry associations and waste service providers. The latter has not traditionally been used as a source for data on tracking/measuring plastics waste, but waste service providers must often maintain detailed manifests regarding what they are collecting, and where they are processing it.

It is also the recommendation of this article that extensive research be conducted into on site waste management activity. As noted above, many manufacturing and industrial stakeholders claim to operate on site plastic recovery and diversion programs. However, access to this data (how much is being managed, how is it being managed (technologies, end use applications etc.) has historically been very difficult.

Designating who will be responsible for collecting and maintaining this information is also a critical early step in developing a successful circular economy. Many stakeholders have expressed concerns surrounding the sensitivity of sharing this data (for competitive/proprietary reasons), while provincial governments have cited lack of resources and administrative oversite to collect and maintain data repositories. This problem is compounded when attempting to gather data across multiple jurisdictions.

The report prepared by Deloitte was a critical first step in helping understand the plastic waste issue, but I would caution readers from jumping to conclusions when reading a sensationalized headline like: “Canada does a bad job at recycling plastics” – a more accurate statement would be “Canada doesn’t know what is happening to plastics at end of life”

About the Author

Calvin LAKHAN, Ph.D, is currently co-investigator of the “Waste Wiki” project at York University (with Dr. Mark Winfield), a research project devoted to advancing understanding of waste management research and policy in Canada. He holds a Ph.D from the University of Waterloo/Wilfrid Laurier University joint Geography program, and degrees in economics (BA) and environmental economics (MEs) from York University. His research interests and expertise center around evaluating the efficacy of municipal recycling initiatives and identifying determinants of consumer recycling behavior. Calvin has worked as both a policy planner for the MOECC and as a consultant on projects for Stewardship Ontario, Multi Material Stewardship Manitoba, and Ontario Electronic Stewardship. Calvin currently sits on the editorial board for Advances in Recycling and Waste Management, and as a reviewer for Waste Management, Resources Conservation and Recycling and Journal of Environmental Management.

New global rules curb unrestricted plastic waste exports

, , ,

Governments at the 14th Conference of the Parties (COP14) of the Basel Convention recently acted to restrict plastic waste exports by requiring countries to obtain prior informed consent before exporting contaminated or mixed plastic waste. A deluge of plastic waste exports from developed countries has polluted developing countries in Southeast Asia after China closed the door to waste imports in 2018.

Fourteenth Meeting of the Conference of the Parties to the Basel Convention

“With this amendment, many developing countries will, for the first time, have information about plastic wastes entering their country and be empowered to refuse plastic waste dumping,” said Dr. Sara Brosché, IPEN Science Advisor. “For far too long developed countries like the US and Canada have been exporting their mixed toxic plastic wastes to developing Asian countries claiming it would be recycled in the receiving country. Instead, much of this contaminated mixed waste cannot be recycled and is instead dumped or burned, or finds its way into the ocean.”

The unanimously adopted actions on plastic wastes include:

  • Removing or reducing the use of hazardous chemicals in plastics production and at any subsequent stage of their life cycle.
  • Setting of specific collection targets and obligations for plastics producers to cover the costs of waste management and clean-up.
  • Preventing and minimizing the generation of plastic waste, including through increasing the durability, reusability and recyclability of plastic products.
  • Significant reduction of single-use plastic products.

A group of cured resins and fluorinated polymers was not included in the requirement of prior informed consent, which means they can be freely traded without notification.

The theme of the meetings was “Clean Planet, Healthy People: Sound Management of Chemicals and Waste”. The meetings, attended by about 1,400 participants, from 180 countries, adopted 73 decisions.

Developing Recycling Solutions for Fiberglass

,

KWI Polymers, headquartered in Boisbriand, Quebec, recently received $150,000 in funding under the Canadian Plastics Innovation Challenge to develop a possible solution for recycling fiberglass. The CPIC is funded by the Innovative Solutions Canada program. The end result could potentially turn transformed materials into street furniture, railings, sidewalks and decking.

There are few options for recycling and disposing of boats made of glass fiber-reinforced plastic, commonly referred to as fiberglass. Most of these boats end up in a landfill, or worse, abandoned on land or in the water. To address this issue, Transport Canada issued a challenge to Canadian small and medium-sized businesses to develop innovative solutions for recycling or reusing fiberglass in an energy-efficient way which recovers as much material as possible. KWI Polymers was a Canadian company that took up the challenge.

A 2007 report by the International Council of Marine Industry Associations estimates that a well-kept fiberglass boat easily can last 50 years, during which time it likely will change owners several times. But “even the best-constructed craft someday will have to end its life,” the report notes.

Statistics from 2016 compiled by the National Marine Manufacturers Association estimates there are 8.6 million boats in Canada. Most of the boats are constructed from fiberglass.

KWI polymers is a company that manufactures polymers from from both virgin and recycled materials. This includes thermoset, thermoplastic, elastomer and rubber polymers.

One aspect of the business of KWI polymers is regrinding. Regrind is material that has already undergone a process such as extrusion or molding and then is chopped up to the appropriate size for repurposing. KWI Polymers offers regrind of consistent quality that can be separated by color and reach a purity level of 95%. These purity levels that are rarely, if ever, attained by other companies in North America. The advantage of using regrind is that it generally comes at a lower cost, and reduces stress on the environment because of the reuse of existing material as an alternative to creating new material.

milled plastic goods with color sample plates (Source: KWI Polymers)

The Canadian Plastics Innovation Challenge

The Canadian Plastics Innovation Challenge is a $12.85-million initiative supporting research projects that aim to address plastic pollution through new and innovative technologies. This initiative is funded by federal departments and agencies, through the Innovative Solutions Canada program, and invites Canadian small and medium-sized businesses to develop innovative solutions in response to specific challenges related to plastic waste.

Innovations Solutions Canada

There are 20 participating federal departments and agencies that will issue challenges through the Innovative Solutions Canada program. These challenges are designed to seek novel solutions and not commercially available products or services. Together, the funding from federal departments and agencies represents a $100-million investment for each of the next three years, to fund innovative challenges focused on various issues across all sectors including pollution from plastics.

Pressure Mounts on Canada to sign global ban on shipping recyclables

,

As reported by the Mia Rabson of The Canadian Press, there is increasing pressure on Canada by environmental activists and Asian nations to sign on to an amendment to an international treaty that would fully ban developed countries like Canada from shipping hazardous waste, including recyclables, to the developing world.

The Basel Convention amendment was proposed more than 20 years ago but Canada’s objection to it is resurfacing as the Philippines continues to press Canada take back more than 100 containers filled with mislabeled waste that were shipped to Manila in 2013 and 2014 labelled as recyclables.

The Basel Convention, adopted by all countries except the United States and Haiti, puts limitations on shipments of hazardous waste, and requires the destination country to be made aware of the contents of the waste and agree to receive it.

In 1995, an amendment was proposed to take the Basel Convention even further, and outright ban all shipments of hazardous waste — with or without consent — including waste intended for recycling. The belief was wealthy countries were avoiding the Basel Convention by labelling things as recycling. Canada has never agreed to it and still won’t.

At least three-quarters of the parties to the original convention have to agree to the amendment, and only two more countries need to say yes for it to be adopted. Debate about the amendment will again be on the agenda as countries meet about the Basel Convention in Switzerland in April.

“Canada, like other Basel Parties such as Japan, Australia and New Zealand for example, has not signed the amendment because the government believes that there are positive consequences to environmentally sound recycling and recovery operations,” wrote Environment Canada spokeswoman Gabrielle Lamontagne in an email.

That makes no sense, says Kathleen Ruff, founder of rightoncanada.ca, an online human rights advocacy site. “Why on Earth can we justify shipping it all the way around the world to poor countries that can’t deal with their own waste anyway?” she said.

In a letter sent to Prime Minister Trudeau on February 11, 2019, Canadian and international environmental, health and human rights organizations call on Prime Minister Trudeau to:

  • Ensure the expeditious return to Canada of 2,500 tons of wastes illegally exported from Canada and dumped in the Philippines, as required by the Basel Convention.
  • Ratify the Basel Ban amendment, which  would prohibit the export of hazardous waste for any reason from more developed countries to less developed countries. The amendment was put in place by an initiative of the developing and European countries and needs the support of only two more countries to come into effect. Canada is one of only 24 eligible countries that have not supported the amendment.

In 2013 and 2014, 103 containers arrived in ports in Manila from Canada, labelled as plastics for recycling, but upon inspection Filipino authorities discovered they were filled with household garbage, including adult diapers, food waste and discarded electronics. Except for a few of the containers that were illegally disposed of, most of the containers remain in quarantine in the ports.

Then Customs Commissioner Ariel Nepomuceno (2nd left) inspects on February 10, 2014 one of 50 container vans containing tons of garbage that are being kept on hold at the container port in Manila. The shipment from Canada was declared as plastic scraps but contained household trash instead. 

A Filipino court ordered Canada to take the garbage back, and Prime Minister Justin Trudeau promised during visits to the Philippines in 2015 and 2017 to deal with the issue. A bilateral working group was established last fall and meetings are to take place in the next few months.

When the shipments were sent, Canadian regulations applied the Basel Convention rules only to waste Canada considered hazardous. Lamontagne said that changed in 2016, so Canada now applies the convention to waste considered hazardous in the destination country. Lamontagne said that means the containers in the Philippines would be prohibited today.

However, Ruff noted the containers would still end up in the Philippines because they were labelled as recycling. They would only be barred if Canada adopted the amendment, she said.

For several decades, countries like Canada and the United States have found it cheaper to flatten plastic garbage into pallets and ship them across the ocean to Asian countries where companies buy the material and hope to recycle it for resale.

Ruff notes many of those nations don’t have sophisticated waste-management systems.

In 2017, the journal Environmental Science and Technology estimated that nearly 90 per cent of the plastics found in the oceans is believed to come from just 10 rivers in Africa and Asia.

Credit: Amanda Montañez; Source: “Export of Plastic Debris by Rivers into the Sea,” by Christian Schmidt et al., in Environmental Science & Technology, Vol. 51, No. 21; November 7, 2017

Aileen Lucero, the national coordinator of the EcoWaste Coalition of the Philippines, wrote an open letter to the Canadian Prime Minister early this year. In the letter, Ms. Lucero stated: “The dumping of Canadian waste in the Philippines is immoral and illegal.”

“The dumping of Canadian wastes in the Philippines is immoral and illegal,” organizations, including IPEN and Basel Action Network, said in a statement to Trudeau Monday. “It is a violation of Canada’s obligations under the U.N. Basel Convention on the Control of Trans-boundary Movements of Hazardous Wastes and their Disposal. Yet, despite making promises, Canada has failed to take action.”

Environment Minister Catherine McKenna is fond of citing a statistic that the equivalent of a truck full of plastic is dumped into the ocean every minute around the world. She is pushing Canada to eliminate plastic garbage entirely by 2040. But that would require much of the plastic produced to be recycled.