Bettina Kamuk, Global Market Director, Waste to Energy at Ramboll
Waste-to-energy is the use of waste to generate energy, usually in the form of heat or electricity. In many ways it is the ultimate in renewable energy, because it recycles what we have already consumed in another form. It is, therefore, a key part of the growing ‘circular economy’.
The idea of the circular economy recognises that there is a limit to the possibilities of recycling. Even recycled goods wear out over time, and further recycling is often not possible. We therefore need a way to deal with the residual waste. We also need a way to deal with waste that is not currently recyclable or recycled. At present, worldwide most of it is sent to landfill. This not only uses valuable space, but also generates methane, a greenhouse gas.
Waste-to-energy offers an alternative—and one with a useful product at the end, in the form of energy. In other words, waste-to-energy has a double bonus for the environment: it reduces greenhouse gas emissions in two ways. First, there are fewer emissions from landfill, and second, it reduces reliance on fossil fuels.
Understanding waste-to-energy
The first incinerator was built in Nottingham, in the UK, in 1874, and the first in the US in New York in 1885. However, these early incinerators usually had little or no capacity to recover either energy or materials. Modern incinerators are able to do both. Many are used to provide heating for local sections of cities. They operate to very tight emission standards so are not polluting, and often reduce the volume of the original waste by more than 95%.
The precise volume, of course, depends on what can be recovered and reused from the ash. Technology to recover metals from ash has developed rapidly in the last few years. A new plant in Copenhagen on the island of Amager, where the Ramboll office is located, is able to recover metal particles as small as 0.5mm across. This is far better than the previous standard of 4mm and is an effective way to sort out metal that is difficult to separate manually before incineration.
Waste-to-energy around the world
At next week’s North American Waste to Energy Conference (NAWTEC), I am going to be part of a panel session on international opportunities for waste-to-energy. The idea of the panel session is to describe what is going on in waste-to-energy around the world, setting out ideas and opportunities for event participants.
Around the world, cities and countries are embracing waste-to-energy, with a number of new green-field facilities being commissioned or built. For example, estimates in Europe suggest that new waste-to-energy capacity of up to 55 mio will be needed to meet landfill directives and circular economy goals. Several Middle Eastern states, including Dubai, Qatar, and Saudi Arabia, have either built or are in the process of commissioning new facilities. New facilities are also being commissioned as far apart as Lebanon, Singapore and Perth, Australia.
In South East Asia, there is a growing move towards waste-to-energy. China’s government has made a decision to move away from landfill, and has already established a number of waste-to-energy plants, mostly using Chinese technology. Thailand and Malaysia also already have waste-to-energy plants. The Philippines, Vietnam and Indonesia have plans to establish plants in the foreseeable future.
Where next for waste-to-energy?
Despite these success stories, there are also parts of the world where waste-to-energy has been slower to grow, such as North America. This is partly because of lack of political will to move away from landfilling, which is perhaps what happens when you have plenty of space. It is also partly because there is less political acceptance that we need to move to a circular economy, with waste-to-energy as a key element. However, as this acceptance grows, there is huge potential in these countries too.
Today a lot of waste is still being sent to landfill or even dumped. The potential for new green-field waste-to-energy facilities is huge. Even in countries where there are already waste-to-energy facilities, old plants will eventually need replacing with modern and more energy-efficient plants. I think the future is bright for waste-to-energy, and I think there is growing acceptance that the future of the world will also be brighter for its increasing use.
About the Author

Bettina Kamuk is Global Market Director and Head of Department at Ramboll. Bettina is a highly experienced waste-to-energy project director and has been responsible for waste-to-energy projects worldwide, most recently in South East Asia and the Middle East. Currently, she is technical advisor for the National Environmental Agency (NEA) in Singapore during the development of the Integrated Waste Management Facility in Singapore planned for an annual capacity of 2 million tonnes of waste-to-energy recovery and more than 200,000 tonnes of bio-waste and recyclables for sorting. Bettina has been Board Member and Chair of the Scientific and Technical Committee for the International Solid Waste Association (ISWA) and has for eight years been chairing ISWA’s Working Group on Energy Recovery.
AboutRamboll
Ramboll is a leading engineering, design and consultancy company founded in Denmark in 1945. The company employs 15,000 working from 300 offices in 35 countries and has especially strong representation in the Nordics, UK, North America, Continental Europe, Middle East and Asia Pacific. Ramboll is at the forefront of addressing the green transition and offers a holistic approach to energy that supports the sector on the journey towards more sustainable solutions. Ramboll has more than 50 years of experience in the planning, design and implementation of energy solutions, covering the full spectrum of technologies and all parts of the value chain from planning to production, transmission and distribution. Ramboll has worked on waste-to-energy projects in 45 countries, providing consulting services for 155 new units and retrofits.