Two international companies recently showcased their respective waste-to-fuel technologies at a seminar held in Thailand and arranged by the Waste-to-Energy Trade Association.
BMH Technology of Finland promotes its waste-to-energy system as a high-quality substitute for fossil fuels, while Japan’s Hokuto Kogyo Company uses a hydrothermal technique to decompose waste. The two companies Wednesday presented at a seminar on the latest waste-management technologies, arranged by Waste-to-Energy Trade Association.
Kristian Batisto, business development engineer of BMH Technology, said his company’s high-tech waste-to-fuel process, can transform a wide variety of materials – including mixed municipal solid waste (MSW), commercial waste and industrial waste – into high-quality solid recovered fuel (SRF). That fuel, when burned, can generate high heat and energy, he said.
The company frames SRF as a “premium-grade waste fuel”, of a much higher quality for industrial use or for generating electricity than ordinary waste fuel or refuse derived fuel (RDF). The breakthrough lies in the additional processing that the input waste of SRF must go through to improve the quality and value of the output product.
The incoming waste must pass through many stages of processing by a “Tyrannosaurus” machine that gradually pulls out non-combustible materials such as glass and metal and then shreds the remaining combustible materials to create the solid recovered fuel output. That output can then be used as a fuel to power many kinds of industrial uses as well as electricity generation.
One key component of the Tyrannosaurus machine is the MIPS® (Massive Impact Protection System). With MIPS, the shredder spits out large pieces of metal that cannot be crushed automatically. Therefore there will be no damage to the shredder and the process line will not stop for any long periods of time. With the MIPS® system, no one has to take items out of the shredder which ensures a high safety level to the workers and longevity of the equipment.
“Compared to fossil fuels such as coal and oil, or even normal RDF, the SRF output from Tyrannosaurus not only has high calorific value and constant fuel quality, but it also emits very low pollution and greenhouse gases,” Batisto said.

TYRANNOSAURUS® Waste refining process example
“As our waste-processing system can efficiently separate out polluted substances within the input waste, only combustible waste is processed into SRF. It will emit a very small amount of pollution and greenhouse gases and meet the safe standards for dioxins and carbon dioxide.”
Batisto said many countries in the European Union as well as China, South Korea and India have already adopted this waste-to-fuel technology. The installation cost for a Tyrannosaurus waste processing system was around 3 million euros ($4.5 million Cdn.).
Japan’s Hokuto Kogyo company representative, Yasuno Tamio, previewed its hydrothermal treatment technology at the Thailand seminar. Hokuto Kogyo claims it can transform the structure of waste by processing it in water at a very high temperature and under high pressure to turn it into useful materials – waste fuel and bioplastic.
Bioplastic are plastics created from biomass such as using wood powder or corn starch and are considered biodegradable. The company claims the bioplastic is much safer for the environment, than plastic manufactured from petroleum hydrocarbons for a number of reasons including the lifecycle CO2 footprint.
Tamio said the technology could efficiently transform and detoxify waste, making it suitable for treating hazardous wastes such as infectious waste from hospitals. The hydrothermal technology process also generates no air pollution because no burning is involved.
Hokuto Kogyu claims its hydrothermal technology generates no dioxins and zero carbon dioxide (as there is no burning processes). The resulting product can be utilized as an alternative fuel to coal.