Raining on the parade: A critique of packaging “take back”​ programs (Terracycle,Loop, Nespresso etc.)

, , , ,

Written by Calvin Lakhan, Ph.D, Faculty of Environmental Studies at York University 

I want to preface this post by saying that I wan’t to be proven wrong – while it may be a peculiar stance to take as a researcher, I want to believe in the environmental benefits of packaging take back programs offered by Terracycle, Recycle Bank etc.

The idea that we are now finding innovative ways to recycle problematic materials and transition towards reusable packaging is a breath of fresh air in an industry that finds itself in a waste crisis.

With that being said, it is important to fully understand what it is we are trying to achieve as we work towards a circular economy. A circular system is our end point, but the path that we ultimately take to get there is where we should focus our attention.

The following is an excerpt from the study (I have attached the full white paper for people to download). Please note that I welcome any and all questions, criticisms and comments – my goal is not to pick on any particular organization, but shed light on the challenges of using a decentralized network for waste collection.

Study Excerpt

In Spring of 2019, York University’s Waste Wiki team was asked to investigate the environmental and economic impact of take back programs involving coffee pods, and other reusable/recyclable items that have de-centralized collection networks (i.e. Terra Cycle programs for shampoo bottles, cigarette butts etc.)

It is a relatively recent phenomenon that consumer packaging goods companies are exploring end of life waste management solutions that exist outside of conventional curbside collection. Increasingly, CPG companies are announcing partnerships with “niche” recyclers (where niche is characterized as a company that specializes in the recovery of problematic/difficult to recover materials), enabling consumers to directly return used packaging to re-processors and have it be diverted from landfill.

However, scant attention has been paid as to whether these types of programs offer legitimate environmental benefits when taking a life cycle approach. While it may seem intuitive that keeping material of a landfill is a good idea, what constitutes recyclability is a much more nuanced question that requires a careful consideration of environmental benefits, costs, accessibility, availability and infrastructural capacity.

In the case of most take back programs offered by companies such as Terracycle, problematic materials are down-cycled into “one off” products. As an example, Terracycle presently has take back programs offered for a range of commonly used household products, including razors and other personal hygiene items, chip bags, multi laminate pouches, sharpies/markers and cigarette waste.

While this initially seems like a good thing, each of the aforementioned items are down-cycled, wherein the end of life secondary product cannot be subsequently recovered, and ultimately is disposed of (i.e. a shampoo bottle is converted into a running shoe, but that running shoe cannot be recycled at its end of life, and will either be landfilled or incinerated).

While Terracycle and their peers should be celebrated for their innovation and commitment to finding new uses for problematic materials, their approach to recycling and reuse creates a dangerous perception among the public about what items can (and should be) recycled/reused.

At present, the processing technology involved in any of the aforementioned take back programs is economically prohibitive, and is really only available in jurisdictions in which the collection program is being offered. Simply put – municipal waste management infrastructure is not designed to either collect or recycle problematic materials.

As an example, the only cost analog that can readily be found in a municipal waste system is for multi-laminate plastic packaging (chip bags, yogurt squeeze containers etc.). In 2018, for the limited number of municipal programs that accepted multi laminate materials as part of their Blue Bin, the cost of recycling exceeded $2000 a tonne.

While comparing Terracycle’s costs (which are not shared) with a public municipal waste management system isn’t a particularly useful comparison, it is done to highlight just how costly it is to achieve, even with established collection, consolidation and sorting systems in place.

Take back programs offered by packaging companies and their partners must find ways to economically consolidate and transport their material to specific facilities, and ensure that those facilities are readily equipped to process that material at scale. The economic and environmental impact of a decentralized logistics network is questionable – take back programs that ask consumers to ship things like coffee pods, chip bags, razors etc. hundreds of kilometers can be both inefficient and costly.

At this time, neither Terracycle nor their partners were willing to share their cost and diversion data with the university, limiting the ability to model our own costing scenarios.

However, as an intellectual exercise, let’s look at a take back program that we have a better understanding of – The “Nespresso” Aluminum Coffee Pod (also managed by Terracycle). 

Results  (See link below)

https://drive.google.com/file/d/1rfERnYLOIhPsHcPA7JHf-BxPvErSiezB/view

Closing Comments

For those of you who may not be inclined to read through the entire white paper (although it is a relatively light read at a little under 8 pages – with lots of graphs), the closing comments are as follows:

Nespresso should be applauded for finding a recyclable alternative and innovating in a way that moves us away from single use plastic pods. However, the danger of programs such as Nespresso’s mailer program is that it creates the illusion of being a good environmental citizen (from both the perspective of the packaging producer and the consumer). However, as both consumers and decision makers, we have to perform our due diligence when evaluating whether our actions (in this case, recycling) are achieving our intended objectives (preferable environmental outcomes).

What is perhaps most damning is that Nespresso Aluminum pods is one of the only environmentally friendly packaging types managed by Terracycle that can readily be recycled at a low cost. Table 1 below summarizes the known emissions credits and recycling costs for commonly found Blue Box Materials (managed via curbside).

Table 1: Comparison of Emissions Credits and Recycling Costs

No alt text provided for this image

Please note that the costs per tonne DO NOT include collection costs – these are just the costs of sorting and processing materials at a material recycling facility, net of any revenue received from marketed materials. Curbside collection costs for Blue Box materials typically range from $150-$300 a tonne (as different municipalities have different collection infrastructure, housing densities, labor rates etc.).

While Terracycle did not provide a breakdown of their collection costs for any of their take back programs, the purpose of this study is to highlight that voluntary take back programs, particularly involving those using a mailer system, can only work when there is a critical mass of consolidated material, and that material is being collected at designated intervals. A take back program that leaves it to consumer discretion for how and when they will return end of life materials is in all likelihood significantly more costly from a transportation perspective due to the number of unique trips required. The only way for material to be efficiently transported is when there is a critical mass of material to transport.

As a secondary concern, important questions surrounding the accessibility and affordability of take back groups needs to be considered. Many of the programs offered by Terracycle and their partners exist largely in urban areas – the reason for this is fairly obvious, as it is simply not economically feasible to offer recycling programs to everyone, everywhere. As a tangent to this statement, the introduction of reusable packaging such as Loop has placed upwards pressures on the price of packaged goods – once again, a novel and unique design, but one that is not readily affordable or accessible to a significant percentage of Canadians.

A recent study from York University estimated that lower income marginalized households are those most likely affected by increases in packaging prices, as a greater proportion of their purchases are made up of pre-packaged items.

The findings from this study should be interpreted with a degree of caution – in the absence of having Terracycle’s data, we can only make best guess estimates based on the existing cost of managing a municipal waste system in Ontario. We welcome critics of these findings to share their data, such that we can all have a better understanding of what it is we would like to achieve from our waste management systems moving forward.  

Simply “recycling” is not enough, and we need to be both ready and willing to explore packaging alternatives that “think outside the Blue Box”.

Lithium Batteries – Rethink, Recycle

, , ,

Written by Zachary Gray, B.Eng.Biosci., Chemical Engineering & Bioengineering

Electricity is in, and fuel is out — The Dutch Royal Shell’s 50-year plan is in motion. Much to longtime shareholder’s chagrin, the 112-year-old global behemoth is pivoting their business model away from fossil fuels in the decades to come in favor of more sustainable forms of energy, including wind, solar, and hydrogen.

The Dutch Royal Shell transition is not limited to ethereal boardroom speak, placating the dry martini-sipping corporate climate change activists, but aligns with the tenets of the Paris Accord and emerging trends in consumer behavior: more electric vehicles and charging stations, less crude oil. Indeed Canadians with ambivalent, and often geopolitically divergent attitudes towards their energy sector are purchasing electric vehicles (“EVs”) at an accelerating pace: EV sales increased 125% from 2017 to 2018, putting an additional 100,000 on our roadways.

The problem to avoid is exchanging one environmental sin for another. There is a greater understanding among the general road-faring population that the fuel they are pumping into their cars, on the way to doing more important things with their time, combusts, adding to the greenhouse gases accumulating in the atmosphere. Meanwhile, charging one’s EV adds a degree of separation between drivers and their energy source.

Generally, driving an EV in Ontario, where 93% of the province’s energy comes from carbon-free sources, is far better for the environment than the combustion box on wheels sitting in the queue at the Shell station. Not so much in Kentucky, where 92% of the state’s energy comes from low-energy-density coal; or worse: Illinois, Ohio, Indiana, or Texas, where they burn far more to keep the lights on – or, EVs cruising along their streets. An EV’s positive environmental impact is only as good as its energy supply and battery.

Often, the EV’s greatest sin is its battery. In a study comparing Tesla’s Model S alongside a comparable internal combustion engine vehicle, the former’s manufacturing process generated 15% more greenhouse gas (“GHG”) emissions. Despair not, however, the same study acknowledged that a Tesla generally rack up fewer GHGs over its lifespan compared to the latter.

For context, Tesla’s position is far better than the first generation of Toyota’s hybrid vehicle, the 1997 Prius. Between mining nickel for its catalysts in Northern Ontario and the spiderweb of trans-continental shipping bringing together the car’s disparate components across Toyota’s decentralized manufacturing sites, the first Prius’s GHG emissions over the course of lifetime dwarfed those of military-grade Hummers – which, some readers may be surprised to learn, are not known for their fuel economy. Tesla’s cathode and electrolyte are its central issues.

Lithium-based Batteries

There are three components to EV’s lithium-based batteries: the anode, made from graphite; the lithium electrolyte; and cathode, often a mixture of nickel, aluminum, and manganese cobalt. Tesla’s cathodes, a combination of nickel, cobalt, and aluminum, are the main environmental culprit; the lithium is salt on the wound.

Analysts estimate that Argentia, Bolivia, and Chile hold 15% of the world’s lithium reserves. Abundance, however, is not the problem: water usage and isolation are. Clean water is scarce high in the Andes, and mining operations use immense volumes in their salt brine ponds to separate the lithium from magnesium and potassium that are also present. Lithium brine ponds now litter the famous Salar de Uyuni salt flats. While TIME magazine may celebrate the wealth potential, and the relative cleanliness of lithium mining throughout these South American countries, consumers should remain vigilant to ensure extractors are not given carte blanch over the region’s resources – besides, who gets a medal for not placing last?

Lithium Mining Operation

For some perspective, the Guangdong province in China used mining to further its economy, much like the three South American nations are doing, feeding the world’s growing appetite for electronics with its vast supply of heavy metals – perfect for batteries and processors. Now, it costs $29/kg to remediate soil in the region. Nor do few publications outside of Canada’s right-wing press celebrate the economic value that the Oil Sands mines deliver to Albertans.

There is also the social impact to consider outside of the environmental damage brought on the world’s growing appetite for electronics and the batteries that keep them charged.

The Democratic Republic of Congo is one of the largest global producers of cobalt, a critical element in Tesla’s cathodes. There are also an estimated 35,000 child laborers working in the Congo’s cobalt mines. At $83,000 per metric tonne, the high commodity prices for this scarce metal are incentivizing the less than stable Congolese government to turn a blind eye to the increasing rate of child enslavement in their country. Meanwhile, citizens in developed nations enjoy faster charging times for their phones and better performance in their EVs, for which they can thank cobalt’s presence. 

That’s how it is: Fossil fuel reliance diminishes as society increasingly coalesces around electronics and sustainable forms of energy. Metals such as lithium and cobalt, play a critical part in the transition’s material infrastructure. However controversial, mining provides the initial access to these vital materials.  Consumers can take heart knowing that battery components, while not non-renewable, are recyclable – unlike the proceeding technology. The rare earth elements can feed a closed-loop supply chain as they enter circulation while robust recycling technologies ensure their place within it.

The importance of battery recycling

Tesla ensured that recycling as part of its battery’s supply chain. The company recycles 60% of spent cells from its cars, reuses a further 10%, and landfills the rest due to technical difficulties. They use Kinsbursky Brothers in North America and Umicore in Europe. Both of these recyclers use traditional furnace techniques called pyrometallurgy to process the spent batteries.

Four high-level events place during the pyrometallurgical process; they are:

  1. Preparing the furnace load, including the battery components and coke;
  2. Treating the off-gas, filtering the batteries’ vaporized plastic parts, before discharging to the atmosphere;
  3. Removing slag from the kiln, including aluminum, silicon, and iron;
  4. Completing the smelting process.

The resultant product is a copper, lithium, cobalt, and nickel alloy, representing 40% of the batteries contents, while The treated off-gas and slag account for the remaining 60%. For reference, a Model S has 7,100 battery cells, weighing 540 kg, meaning that the heating-based approach recovers ~220 kg of valuable cathodic materials, representing approximately 80-85% of the original amount, for the industry’s growing closed-loop supply chain. 

Altogether, the pyrometallurgical recycling of lithium-ion batteries reduces GHG emissions by 70% over using new resources, further lowering the environmental impact for the next generation of EVs.

Umicore’s process can handle 7,000 metric tonnes per year, equivalent to 35,000 EV batteries. Right now, the company is focusing on better serving smaller-scale electronics and pivoting their technical model towards less-energy intensive forms of battery recycling. Fully embracing hydrometallurgical techniques, the process extracting metal ions from aqueous solutions and forming salts, is the new frontier in lithium battery recycling. One Canadian company stands out in the emerging technical group: Li-Cycle.

Li-Cycle Corporation

The Mississauga-based Li-Cycle Corporation is piloting its two-step, closed-loop recycling technology in Southern Ontario. First, the “Spoke” mechanically reduces the size of the battery’s components, leading to the “Hub,” which leverages hydrometallurgical technologies to yield high-value salts. In addition to emitting few GHGs and expending little solid waste, the company also treats and reuses its water and acid. Encouragingly, the company achieved a >90% recovery rate for critical metals during their pilot-scale operations.

Li-Cycle Technology™ is a closed loop, processing technology that recycles lithium-ion batteries. The technology recovers 80-100% of all materials found in lithium-ion batteries.

Li-Cycle’s technology minimizes energy usage and operational inputs while outperforming competitor’s return. Going forward, the company will separate the two components business units, better serving regional markets: Multiple Spokes, each processing 5,000 tonnes of used batteries per year, will supply a 15-20,000 tonne Hub. A constellation of Li-Cycle’s units would increase the availability of critical metals from other electronics, such as cell phones, for the rapidly expanding EV market.

Concluding remarks

Tesla recently announced its concern about the impending shortage of metals critical to their batteries’ chemistry. In the future, companies such as Canada’s Li-Cycle and Umicore will be able to mediate discrepancies in the EV supply chain. Used batteries languishing in the dump are harmful to the environment and damage the growing, technical infrastructure around recycling rare earth metals. Mining brings the batteries’ minerals into circulation while recycling keeps them in use.

Recycling will be an integral part of the EVs’ industrial arc as they proliferate in usage, while the energy paradigm continues to shift from fossil fuels to sustainable forms of electricity and new generations of battery technology minimize the use of precious minerals.


About the Author

Zachary Gray graduated from McMaster University with a bachelor’s degree in Chemical Engineering & Bioengineering.  He has worked with several early-stage cleantech and agri-industrial companies since completing his studies, while remaining an active member of his community.  He is enthusiastic about topics that combine innovation, entrepreneurism, and social impact.

Making the Case for a Zero Plastic Waste Economy: Canada Moves to Ban Single-Use Plastics in an Effort to Reduce Plastic Pollution

, , ,

Written by Selina Lee-Andersen, McCarthy Tetrault

There is no doubt that plastics provide unparalleled functionality and durability across a range of products in our everyday lives. The production and use of plastics is growing faster than any other material due to their many practical uses. However, certain characteristics that make plastics so valuable can also create challenges for their end-of-life waste management. In particular, the low costs of producing and disposing of plastics have increased the amount of disposable plastic products and packaging entering the consumer market. According to the Canadian Council of Ministers of the Environment (CCME), over half of these disposable plastic products and packaging are designed to be used once and thrown away. CCME reports that an estimated 95% of the material value of plastic packaging (or between $100 and $150 billion dollars annually) is lost to the global economy after only a single use.

In recent years, plastic pollution has emerged as a critical environmental issue, one that must be addressed globally. To reduce plastic waste in Canada, the federal government announced in June 2019 that it will ban single-use plastics as early as 2021. The ban is expected to include items such as plastic bags, straws, cutlery, plates and stir sticks. The federal government will also work together with the provinces and territories to introduce Extended Producer Responsibility (EPR) programs, which would seek to establish standards and targets for companies that manufacture plastic products or sell items with plastic packaging.

The federal government has indicated that these measures will align with similar actions being taken in the European Union and other countries. In addition, these initiatives complement Canada’s adoption of the Ocean Plastics Charter in June 2018, which lays the groundwork for ensuring that plastics are designed for reuse and recycling. In addition, the federal government’s efforts to reduce plastic pollution includes ongoing work through the CCME to develop an action plan to implement the Canada-wide 2018 Strategy on Zero Plastic Waste.

Policy Initiatives to Reduce Plastic Pollution

The specific policy initiatives announced by the federal government include:

  • Banning harmful single-use plastics as early as 2021 under theCanadian Environmental Protection Act and taking other steps to reduce plastic waste, where supported by scientific evidence and when warranted – and taking other steps to reduce plastic waste. The ban would cover single-use plastic products and packaging (e.g. shopping bags, straws, cutlery, plates, and stir sticks); the specific products and measures included in the ban will be determined once a State of the Science assessment on plastic pollution in the environment has been completed. The assessment will include a peer review, public consultations, and socio-economic considerations. Additional regulatory actions could include requiring products to contain a set amount of recycled content, or be capable of being recycled or repaired.
  • Ensuring that companies that manufacture plastic products or sell items with plastic packaging are responsible for managing the collection and recycling of their plastic waste. EPR programs are recognized as an effective mechanism to support the creation of a circular economy. Under an EPR program, companies making products are responsible for the end-of-life management of their products and packaging. Through the CCME, the federal government will work with provinces and territories to support the development of consistent EPR programs across the country. This will include setting targets for plastics collection, recycling, and recycled content requirements.
  • Working with industry to prevent and retrieve abandoned, lost, or discarded fishing gear, known as ghost fishing gear – a major contributor to marine plastic debris. The federal government will work with stakeholders through a new Sustainable Fisheries Solutions and Retrieval Support Contribution Program. In particular, the federal government will support fish harvesters to acquire new gear technologies to reduce gear loss, and take actions to support ghost gear retrieval and responsible disposal. In addition, the federal government will seek to reduce the impacts of ghost fishing gear in Canadian aquatic ecosystems. It is important to note that a significant amount of plastic in the oceans is comprised of fishing nets. In a study by the Ocean Cleanup Foundation that was published in 2018, scientists found that at least 46% of the plastic in the Great Pacific Garbage Patch comes from fishing nets, while miscellaneous discarded fishing gear makes up the majority of the rest.
  • Investing in new Canadian technologies. Through the Canadian Plastics Innovation Challenge, the federal government is helping small businesses across the country find new ways to reduce plastic waste and turn waste into valuable resources supporting a circular economy. Seven challenges have been launched so far, providing over $10 million dollars to 18 Canadian small- and medium-sized enterprises. These businesses are working to reduce plastic waste from food packaging, construction waste, marine vessels, and fishing gear. They are also improving plastic recycling through artificial intelligence and refining technologies for bioplastics.
  • Mobilizing international support to address plastic pollution. At the 2018 G7 meeting in Charlevoix, Canada launched the Ocean Plastics Charter, which outlines actions to eradicate plastic pollution in order to address the impacts of marine litter on the health and sustainability of the oceans, coastal communities, and ecosystems. As of July 2019, the Charter has been endorsed by 21 governments and 63 businesses and organizations. To assist developing countries in reducing marine litter, the federal government is contributing $100 million to help developing countries prevent plastic waste from entering the oceans, address plastic waste on shorelines, and better manage existing plastic resources. This includes $65 million through the World Bank, $6 million to strengthen innovative private-public partnerships through the World Economic Forum’s Global Plastic Action Partnership, and $20 million to help implement the G7 Innovation Challenge to Address Marine Plastic Litter.
  • Reducing plastic waste from federal operations. The federal government is strengthening policies, requirements, and guidelines that promote sustainable procurement practices, and has committed to divert at least 75% of plastic waste from federal operations by 2030.
  • Reducing plastic microbeads in freshwater marine ecosystems. To reduce the amount of plastic microbeads entering Canadian freshwater and marine ecosystems, Canada prohibited the manufacture and import of all toiletries that contain plastic microbeads (such as bath and body products) as of July 1, 2018. A complete ban came into force July 1, 2019.
  • Supporting community-led action and citizen-science activities. The federal government has committed $1.5 million in 2019 for organizations to start new plastics projects that mobilize and engage citizens. This funding is designed to support community-led action through education, outreach, and citizen science, and support concrete actions through community cleanups and demonstrations to reduce plastic waste.
  • Launching Canada’s Plastics Science Agenda. The federal government will accelerate research into the life cycle of plastics and on the impacts of plastics pollution on humans, wildlife, and the environment. This agenda is aimed at supporting evidence-based decision-making and innovative approaches to sustainable plastics production, recycling, and recovery. Canada’s Plastics Science Agenda will also identify priority areas for multi-sector research partnerships to help achieve Canada’s zero plastic waste goals.

Economic Study of the Canadian Plastic Industry, Markets and Waste

In July 2018, Environment and Climate Change Canada (ECCC) commissioned a study to provide insights into the entire plastics value chain in Canada, from raw material production and products manufacturing to use and end-of-life. In June 2019, Deloitte and Cheminfo Services Inc. delivered its report to ECCC – the Economic Study of the Canadian Plastic Industry, Markets and Waste (the Report).  Highlights of the Report are set out below.

The scope of the Report encompasses most plastics types used across all key sectors. The Report’s authors found that with total sales of approximately $35 billion, plastic resin and plastic product manufacturing in Canada accounts for more than 5% of sales in the Canadian manufacturing sector. The sector employs approximately 93,000 people across 1,932 establishments. In Canada, plastic products are in demand in most sectors of the economy, with approximately 4,667 kilotonnes (kt) of plastics introduced into the domestic market on an annual basis. The packaging, construction and automotive sectors account for 69% of plastic end-use.

In terms of the life cycle of plastics in Canada, the Report notes that it is mostly linear in nature, with an estimated 9% of plastic waste recycled, 4% incinerated with energy recovery, 86% landfilled, and 1% leaked into the environment in 2016. The main generators of plastic waste in Canada are:

  • packaging (43%);
  • automotive (9%);
  • textiles (7%);
  • electrical and electronic equipment (7%); and
  • construction (5%).

The Report found that plastics materials that were not recovered (i.e. 2,824 kt of resins sent to landfill or leaked into the environment) represented a lost opportunity of $7.8 billion for Canada in 2016, based on the value of virgin resin material. By 2030, the Report estimates that Canada’s lost opportunity in respect of unrecovered plastics could rise to $11.1 billion based on a business-as-usual scenario. Given forecasted trends in waste streams and economic drivers, the Report indicates that the linear profile of the Canadian plastics economy will not improve under a business-as-usual situation. The Report concluded that:

  • Given current market prices, structures, business models and the low cost of disposal, there is limited direct economic incentive for plastics recycling and value recovery in Canada. Primary (i.e. virgin resin production) and secondary (i.e. recycled) plastics compete against each other in the same market, based on price and quality of the resins. This competition is difficult for the recycling industry, which has to deal not only with prices, but also with quality issues as a result of uneven feedstock composition. While secondary plastics producers enjoy lower upfront investment than their counterparts in the primary market, they face greater financial exposure during periods of low oil prices (which bring down the price for virgin resins) because their cost structure is more labour intensive. Key barriers to the recovery of plastics include a combination of factors including low diversion rates (only 25% of all plastics discarded are collected for diversion), process losses in the sorting (e.g. shredded residues containing plastic are sent to landfill) and reprocessing stages, and the near absence of high volume recovery options for hard-to-recycle plastics (such as plastics waste coming from the automotive sector).
  • A zero plastic economy would deliver significant benefits to Canada. The Report’s authors modeled a 2030 scenario to examine the potential costs and benefits of achieving zero plastics waste. This scenario used a 90% landfill diversion rate as a proxy for zero plastic waste and assumed that: (i) plastics production and end use applications increased, but followed the same patterns as in 2016; (ii) mechanical recycling was quadrupled from its business-as-usual level; (iii) chemical recycling was significantly scaled up, taking into account readiness levels and associated learning curves; and (iv) energy from waste was leveraged to deal with the remaining volumes and hard-to-recycle plastics. An analysis by the authors demonstrated that the 2030 scenario would result in benefits including $500 million of annual costs avoided, 42,000 direct and indirect jobs created, and annual greenhouse gas emission savings of 1.8 Mt of carbon dioxide equivalent.  
  • The analysis indicates that zero plastic waste cannot be achieved without concurrent, strategic interventions by government, industry stakeholders and the public across each stage of the plastic lifecycle and targeted at sectors. According to the Report, achieving 90% plastic waste recovery will require significant investment to diversify and expand the capacity of current value recovery options including mechanical recycling. Chemical recycling, and waste-to-energy. The Report also notes that significant improvements to current plastic waste diversion rates will be required. In particular, a systematic approach across sectors will be needed because no single public or private sector action can shift the system.
  • The Report identifies the following five sets of interventions (including policies, measures and calls-to-action) to achieve zero plastic waste in Canada:
    1. Creating viable, domestic, secondary end-markets. This includes:
      • Creating stable, predictable demand for recycled plastics that is separate from virgin markets (e.g. requirements for recycled content, taxes/fees on virgin resins).
      • Improving the quality of recovered plastics at both the point of collection and in materials processing.
      • Improving access to domestic supply of recycled content.
      • Supporting innovation in product designs and uses for secondary plastics.
    2. Getting everybody onboard to collect all plastics. This includes:
      • Creating sector-specific requirements for collection (e.g. extended producer responsibility, performance agreements).
      • Restricting disposal (e.g. landfill taxes or bans).
      • Requiring/incentivizing collection (e.g. industry targets, deposit refund).
      • Developing more consistent requirements and rules across Canada (e.g. common curbside recycling).
      • Improving public information on collection and recyclability.
    3. Supporting and expanding all value-recovery options. This includes:
      • Supporting development of innovative value-recovery options, such as advanced mechanical and chemical recycling.
      • Focusing primarily on improving mechanical recycling.
      • Increasing the ease and speed at which new value recovery facilities can be developed by removing policy barriers and investing in innovation.
    4. Increasing efficiency throughout the value chain. This includes:
      • Facilitating collection and value-recovery by creating requirements for the reusability and recyclability of product design (e.g. standards and public procurement).
      • Improving performance by investing in sorting and separation.
      • Educating and engaging actors and consumers throughout the value chain.
    5. Extending plastics lifetime to reduce and delay waste generation. This includes leveraging opportunities to extend the lifetime of durable goods, which account for approximately 51% of total plastics waste, but have a very low recycling rate (2%) compared to that of non-durable goods (15%). In addition, the Report recommends introducing measures that contribute to increased reuse, repair and remanufacturing such as standard requirements for reparability or reusability, and tax exemptions to reduce and delay waste generation from durable goods in Canada.

In order to achieve zero plastic waste, radical changes will be required across the life cycle of plastic products. This includes not only changes in consumer behaviour, but also a significant increase in the number of recycling facilities in Canada, investments in recycling technology and the need for innovative government policies such as landfill taxes or product standards. As noted above, there is no single public or private sector action that can shift the system. Taking into consideration international benchmarks from ten European jurisdictions as well as US and Australian case studies, the Report’s authors note that a systemic approach is needed that is supp

This article has been republished with the permission of the author. It was originally posted on the McCarthy Tertrault Canadian Environmental Perspectives Blog.


About the Author

Selina Lee-Andersen is a partner in our Vancouver office and a member of the firm’s Environmental, Regulatory and Aboriginal Group, Energy & Mining Group, Retail and Consumer Markets Group, Defence Initiative and Asia Group. Recognized for her in-depth knowledge and range of experience, her practice focuses primarily in the areas of environmental law, corporate/commercial law, regulatory law, compliance, and Aboriginal issues in the energy and natural resource sectors.

Sending surplus food to charity is not the way to reduce greenhouse gas emissions

,

Written by Elaine Power, Queen’s University, Ontario

This article is republished from The Conversation under a Creative Commons license. Read the original article.

With the recent news that Canada is warming twice as fast as the rest of the world, Environment and Climate Change Canada (ECCC) is calling for urgent action to reduce greenhouse gas emissions.

Reducing food loss and waste is one important action we can take. When food waste is sent to landfill, it decomposes to methane, which is 25 times more powerful than carbon dioxide as a greenhouse gas. In addition, food waste represents a tremendous loss of the energy, land, water and labour used to produce the food.

And we waste a lot of food. An incredible 58 per cent of all food produced in Canada is either lost or wasted. This is an enormous amount of food, worth almost $50 billion, according to a report by the Toronto-based food charity, Second Harvest.

The first proposed strategy, laid out by ECCC in a draft document circulated in early spring 2019 to academics and others with interests and expertise in addressing food loss and waste, is the most obvious: to reduce the amount of food that is wasted, most of which originates in food processing, production and manufacturing.

The second proposed strategy is to enhance the donation of surplus food to feed hungry people. This strategy appears to be a simple “no-brainer,” as demonstrated by the more than 233,000 Canadians who signed a Change.org petition to end food waste. The comments on the petition website show that many Canadians believe it to be morally wrong to waste edible food, especially when some Canadians are hungry.

However, while giving food that would otherwise go to landfill to hungry people may be a convenient part of a solution to reduce greenhouse gases, it will do little to ensure the well-being of the four million Canadians who are food insecure.

Reducing food waste by feeding hungry Canadians is a simplistic solution that is deeply problematic and morally distressing. It provides the comforting illusion of a solution to hunger while the underlying problem — poverty — is not addressed.

Food insecurity

Food insecurity — the inadequate or uncertain access to food because of financial constraints — is a symptom and result of poverty. It is a public health crisis, with profound consequences for individual health and for health-care costs. It cannot be solved by food charity.

Only one in five hungry Canadians use food banks. And even when they do, they remain food insecure. When food banks and soup kitchens distribute edible food that would otherwise go to landfill, it means that some hungry Canadians are less hungry than they would otherwise be. But food charity is not a solution to the problem of food insecurity.

Nobel Prize winner Archbishop Desmond Tutu has recounted the profound poverty affecting black South Africans when he was a boy. He explained that the free school meals provided to white — but not Black — school children were often thrown in the garbage in favour of homemade packed lunches.

Watching another Black boy rummaging in the garbage to find the food that white children had rejected was indelibly marked in his memory of childhood. “It was perfectly edible food. But I knew it was wrong,” he said. For Archbishop Tutu, the idea that some people have to eat the cast-off food that others do not want is a powerful symbol of profound, systemic injustice.

I expect he would be shocked that the government of one of the richest countries in the world, with an international reputation as a just society, would consider endorsing such a proposal.

The right to an adequate standard of living

While Canada has committed to the Sustainable Development Goal of halving per capita food waste globally by 2030 and cutting greenhouse gas emissions by 232 million tonnes by 2030, we must remember that we have other international obligations too.

In 2012, the UN Special Rapporteur on the Right to Food, Olivier De Schutter, expressed concern about the growing gap between Canada’s international human rights commitments and their domestic implementation. He recommended that Canada ensure income security for all citizens at a level sufficient to “enjoy the human right to an adequate standard of living,” which includes the right to food.

There is no reason why we cannot achieve our goals of reducing food waste and greenhouse gas emissions while also assuring all Canadians the income they need for an adequate standard of living, including the ability to buy their own food. Reducing poverty through effective public policy, such as the poverty reduction strategy introduced by the Government of Newfoundland and Labrador and the ill-fated Ontario Basic Income Pilot project, reduces food insecurity.

In a country as wealthy as ours, it is immoral, unjust and unconscionable that the Government of Canada would endorse a plan that effectively relegates four million Canadians to second-class citizenry by recommending that they eat the garbage that no one else wants.


Elaine Power, Associate Professor in Health Studies, Queen’s University, Ontario

The Conversation

Separating fact from fiction – are we really only recycling 9% of plastics?

,

Written by Calvin Lakhan, Ph.D, Faculty of Environmental Studies at York University

It seems like everywhere I turn, I see the headline “Canada only recycles 9% of its plastics” – this figure, taken from a report prepared by Deloitte for Environment and Climate Change Canada, has now become the focal point of both those within the industry and the general public alike.

For a country that prides itself on being environmentally conscious and engaged, can we really be doing that badly?

I want to start this post off by saying that I will readily admit to not knowing what % of plastics are recycled in Canada (or anywhere else for that matter). However, I would venture to say that nobody knows, and we should be cautious about taking any estimate at face value without fully understanding the methodology and limitations used to arrive at that figure.

How do we calculate a recycling rate?

For those of you well versed in the subject, feel free to skip ahead. However, it is important to understand how exactly recycling rates are calculated. At a high level, a recycling rate is total tonnes of waste recycled divided by total tonnes of waste generated. This seems simple enough, but this grade school arithmetic actually involves a tremendous amount of modeling, assumptions, and to be perfectly blunt, guess work.

Solid waste diversion and disposal, Canada, 2002 to 2016
(Source: Government of Canada)

Total Tonnes Recycled (The Numerator)

First, let’s consider the numerator in the equation – total tonnes of plastics recycled. For certain jurisdictions, (i.e. Ontario, British Columbia, Quebec etc.), total tonnes of residential plastics recycled is tracked by municipalities (using total tonnes of material marketed), who then subsequently report those figures to a provincial body. These figures are then summed and aggregated, to arrive at a figure for total tonnes of residential plastics recycled.

Generally speaking, tracking recycled tonnes for residential recycling programs is fairly straightforward, as these are actual measurements being reported by collectors. This sounds simple – until we are asked to determine total tonnes recycled by the IC&I (industrial, commercial and institutional) sector. The vast majority of all waste generated in Canada comes from the IC&I sector – by comparison, it is estimated that the residential waste stream makes up less than 20% of the overall waste stream.

As noted in a previous post, data surrounding plastics generation/recovery in the IC&I sector remains extremely poor, with little consensus regarding who is generating plastics waste, how much is being generated, and how much is being diverted.

The IC&I sectors consist of a range of establishments, including: malls, office buildings, construction and demolition sites, restaurants, hotels, hospitals, educational institutions, manufacturing plants, and multi-residential buildings.

Previous attempts to model IC&I recycling rates have ranged widely, with plastic diversion rates ranging from as little as 10% to as much as 80% depending on the sector and what actually constitutes diversion activity. The reason for this widely ranging disparity is that there is no formal legislative requirement for the majority of the IC&I sector to report the quantities or types of waste being generated, diverted or disposed to provincial authorities.

In Ontario for example, only large IC&I establishments are regulated under existing legislation (which requires establishments to have a formal waste diversion plan and conduct waste audits). However, it is estimated than 80% of waste generated from the IC&I sector comes from small and medium sized establishments, and thus, fall outside the purview of existing regulation. This issue is exacerbated in other provinces which have no formal legislation that monitors the IC&I sector, and relies on voluntary reporting to keep track of waste generation data.

In short, the majority of the plastic waste being generated across Canada is not being tracked – which makes the figures reported by Deloitte all the more curious.

As an intellectual exercise, think about your average food court for a moment and how much packaging waste is being generated (both recyclable and unrecyclable). Are shoppers putting all their papers in the recycling bin? Oops, somebody with a half full drink tossed it in and ruined the material. How many plastic forks, knives and straws are being handed out? Did the person taking out the trash really just put all the recyclables and garbage in the same bag? Variations of this chaotic scene plays out every day, all over the country, and somehow, I am supposed to believe that this is being tracked by the owners of establishments?

One of the reasons why legislation for the IC&I sector has been so challenging in Ontario (and nationally) is due to the poor quality of the data. Whatever estimates do exist, have largely been based on a relatively small sample of waste audits, and modeled using a combination of waste generated per employee estimates (by sector and by NAICS code). If this sounds confusing, it is – at no point have we ever been able to credibly quantify the total tonnes of material recycled for both the residential and IC&I sectors. At best, we are making educated guesses, and at worse, we are producing inaccurate estimates based on a flawed methodology.

In short, the majority of the plastic waste being recycled across Canada is not being tracked – however, this does not necessarily mean that this material is ending up in landfills.

On site recovery, reuse and recycling

Despite the fact that there is very little formal data for plastics waste that is being tracked, many IC&I generators (particularly in the industrial and manufacturing sector), rely on on-site waste management programs to reuse and recycle plastic waste. True to the spirit of a circular economy, many producers use plastic waste outputs from one part of their production process, as inputs for the next. Anecdotally, many producers claim diversion rates close to 100%, as any material of value is reused, recycled or reprocessed internally. It is estimated that more than 50% of all IC&I material being generated is managed using on-site options. While this makes sense intuitively, it is difficult to gather any firm data regarding the quantities or scale of on-site material management for plastics. As noted previously, existing legislation does not require this information to be reported, and as such, any data that is available is left to the discretion of private companies and associations to share publicly.

Previous attempts to gather this data (most recently by the Ontario MOECC in the IC&I Review conducted in 2014) was met with resistance from the IC&I sector, who claimed administrative burden and commercial sensitivity in collecting and sharing this data.

Total Tonnes Generated (the Denominator)

I could probably stop here having made the point that we are working with insufficient data – however, I am also writing this article so that people can fully appreciate what goes into calculating a recycling rate, as very few ever stop to ask how we come up with our numbers.

With that being, I now turn my attention to the denominator in the equation – total plastic waste generated. Unlike total tonnes recycled, which is something that can be measured and recorded using a weigh scale at a material recycling facility, total plastic waste generated is an entirely modeled number. For the residential recycling sector (Blue Box), producers of packaging are asked to report their unit sales into a given market, and generation rates for households are modeled using a series of assumptions based on population density, locality, urban/rural split etc. I have worked in this space for the better part of a decade, and I still could not tell you what exactly goes into the waste generation model used for printed paper and packaging.

Turning our attention back to the IC&I sector, there is no formal requirement for any establishment to report how much of a particular plastic waste they have generated into a market every year. Unlike printed paper and packaging, we cannot assume that unit sales is a proxy for waste generation, as many plastics are durable goods. To use a very simple example, a company may sell 1000 tonnes of plastic lumber into a market every year, but that doesn’t mean all 1000 tonnes will reach end of life during that period.

To accurately model the quantities of plastics needing to be managed at end of life, we would need to know its life expectancy, composition, primary and secondary use etc. To make a very long story short, you would almost need to do a mass balance of all plastics before we could credibly estimate overall generation. Simply put – we do not have that information, and even if it could accurately monitored and tracked, there is no legislative requirement for plastic producers to share that information.

Is “Ball Parking” good enough?

The exact findings from the Deloitte report said:

3.2 million metric tonnes ended up as garbage, 86 per cent went to landfill, 4 per cent to incinerators and 1 per cent — 29,000 metric tonnes — ended up as litter which can contaminate lakes and oceans. Most of the wasted plastic comes from offices, institutions or industries.

To be quite frank, I do not think the above numbers are accurate – however, does that really matter? I suppose that depends on what we are trying to achieve. If the purpose is to highlight that a significant percentage of our plastics is ending up in a landfill, necessitating immediate corrective action, then I am all for it. Communicating the size and scale of the problem is of greater importance than precision.

However, if our intent is to develop policy and legislation, particularly with respect to asking producers to pay for end of life costs associated with managing plastics at end of life, then we have to press pause.

Solid waste diversion rate by source, Canada, 2002 to 2016
(Source: Environment Canada)

Developing a data acquisition strategy

Identifying stakeholders who may have access and be willing to share sector specific data with respect to plastics generation/recycling/diversion will be critical in fully understanding the size and scope of the issue. It is only possible to achieve “Zero plastic waste” if we can understand how much is being generated, and what is presently happening to it.

Potential sources for this data include individual producers, industry associations and waste service providers. The latter has not traditionally been used as a source for data on tracking/measuring plastics waste, but waste service providers must often maintain detailed manifests regarding what they are collecting, and where they are processing it.

It is also the recommendation of this article that extensive research be conducted into on site waste management activity. As noted above, many manufacturing and industrial stakeholders claim to operate on site plastic recovery and diversion programs. However, access to this data (how much is being managed, how is it being managed (technologies, end use applications etc.) has historically been very difficult.

Designating who will be responsible for collecting and maintaining this information is also a critical early step in developing a successful circular economy. Many stakeholders have expressed concerns surrounding the sensitivity of sharing this data (for competitive/proprietary reasons), while provincial governments have cited lack of resources and administrative oversite to collect and maintain data repositories. This problem is compounded when attempting to gather data across multiple jurisdictions.

The report prepared by Deloitte was a critical first step in helping understand the plastic waste issue, but I would caution readers from jumping to conclusions when reading a sensationalized headline like: “Canada does a bad job at recycling plastics” – a more accurate statement would be “Canada doesn’t know what is happening to plastics at end of life”

About the Author

Calvin LAKHAN, Ph.D, is currently co-investigator of the “Waste Wiki” project at York University (with Dr. Mark Winfield), a research project devoted to advancing understanding of waste management research and policy in Canada. He holds a Ph.D from the University of Waterloo/Wilfrid Laurier University joint Geography program, and degrees in economics (BA) and environmental economics (MEs) from York University. His research interests and expertise center around evaluating the efficacy of municipal recycling initiatives and identifying determinants of consumer recycling behavior. Calvin has worked as both a policy planner for the MOECC and as a consultant on projects for Stewardship Ontario, Multi Material Stewardship Manitoba, and Ontario Electronic Stewardship. Calvin currently sits on the editorial board for Advances in Recycling and Waste Management, and as a reviewer for Waste Management, Resources Conservation and Recycling and Journal of Environmental Management.

Who’s Making the Rules on Global Plastics?

, ,

Written by Jonathan D. Cocker, Baker McKenzie

There is no question that dramatic changes are coming for the supply and reverse supply chain for plastics that will impact packaging, containers, and plastic products. From resins and polymer mixes to ocean plastic clean up and waste export bans and everything in between, it is difficult to not foresee a fundamental regime shift coming for the regulation of plastics globally. But just who decides on these new rules and how will disparate initiatives and goals lead to convergence on legal standards?

EU Plastics Strategy

The first place to start is, of course, the European Union. The broad-reaching 2018 strategy encompasses the landmark 2019 Single Use Plastics Directive, targeting certain commonly disposed products and includes:

  • Bans for a number of single use plastics (cutlery, straws, etc.) where non-plastic alternatives are readily available and affordable;
  • Reduction targets for food containers and cups;
  • Ambitious collection targets of up to 90%;
  • Producer payment obligations to help fund waste management and legacy clean-up costs;
  • Labelling of some plastics, indicating how to waste dispose and alerts as to the negative environmental impacts of plastics; and
  • Consumer awareness campaigns about negative impacts of plastic litter and re-use and waste management options. 

In short, it is a policy mix impacting various parts of the life-cycle. The Plastics Strategy goes further, however, and requires of all plastics:

  • Design of recyclability;
  • Creation of markets for recycled and renewable plastics;
  • Expanding and modernizing EU’s plastics sorting and recycling capacity;
  • Mandating producer-paid initiatives to curb plastic wastes;
  • A regulatory framework for plastics with biodegradable properties; and
  • Coming regulation on microplastics across a number of industries.

This relatively comprehensive set of product and supply chain requirements would apply to both inbound and outbound products, leaving little room for global plastics industry stakeholders to remain untouched by these coming standards.

Ellen MacArthur’s “New Plastics Economy”

What the Ellen MacArthur Foundation lacks in regulatory authority, it more than makes up for in ambition. The seminal publications on a “New Plastics Economy” involves macro-level systems to remake supply/reverse supply chains. Overall, it’s mission is described as follows:

  • Elimination of problematic or unnecessary plastic packaging through redesign, innovation, and new delivery models is a priority;
  • Reuse models are applied where relevant, reducing the need for single-use packaging;
  • All plastic packaging is 100% reusable, recyclable, or compostable;
  • All plastic packaging is reused, recycled, or composted in practice;
  • The use of plastic is fully decoupled from the consumption of finite resources; and
  • All plastic packaging is free of hazardous chemicals, and the health, safety, and rights of all people involved are respected.

The genius of the New Plastics Economy Global Commitment is its multi-stakeholders industry approach, enlisting some of the largest industrials and other stakeholders from across the plastics supply and reverse supply chain to make concrete, shared undertakings, thereby establishing common terms of reference and objective standards by which supply chain parties can systematize their efforts.

They’ve gone further and fostered the growth of “Plastic Pacts” in which countries are to enlist domestic industry to make commitments which exceed EU standards. The reference terms are not, however, entirely consistent, potentially creating future challenges for international industry to adopt a single compliance legal regime where long-term investment under the MacArthur Foundation model isn’t entirely exported into law.

Alliance to End Plastic Waste

January 2019 also saw the creation of the industry-led Alliance to End Plastic Waste, which has committed an astounding $1.5 Billion over the next five years with a mandate to “bring to scale solutions that will minimize and manage plastic waste and promote solutions for used plastics by helping enable a circular economy”.

To date, the Alliance appears to be focused upon funding plastics-relevant waste management projects, principally in Asia, but their heft will, no doubt, be relevant in the overall direction of plastics policy given their petrochemical representation and their planned investments. It remains to be seen when and how they might enter the plastics product design-for-environment field.

Basel Convention

Finally, the newest major entrant in the increasingly crowded field of new plastics standards is the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal. In addition to the deeming of most plastic wastes as controlled by the environmental and transfer protections built into the Basel Convention effective January 1st, 2021, the May 2019 resolutions also put the organization into the forefront of plastics regulation with some notable initiatives:

  • An expert working group is to be convened to consider whether to expand the categories of plastic wastes which should be classified as “hazardous” under the Convention (many will be simply classified as “other wastes” under the May 2019 resolutions);
  • A “partnership on plastic wastes” is to be convened which will include the (state) parties to the Convention, as well as certain other stakeholders (as either parties or observers) and will:
    • Engage in pilot projects and scaling exercises;
    • Assess best practices, as well as barriers, for the prevention, minimization, and environmentally-sound management of plastic waste movements; and
    • Consider options for increasing durability, reusability, reparability and recyclability of plastics.
  • A mandate to update the current Technical Guidelines which are to be a point of reference of parties’ national and international waste management and recycling standards, including how they relate to plastics.

With these goals, the Basel Convention has gone from a virtual bystander on most plastic waste issues to an aspirant for a central role, with the backing of almost all national governments (notably absent – USA). Further, the Basel Convention has overtly called for collaboration with the United National Environment Program, giving it a further platform to push through multi-lateral action on plastics. Whether the Basel Convention lacks the industry integration to remain relevant in this dynamic market, however, remains to be seen.

Where’s the Convergence?

In looking at these four major global initiatives, what’s most staggering is that they’ve all arisen in the past year, each arguably filling a vacuum on plastics stewardship to which great public animosity was paid.

While each has a somewhat different mandate and maybe all would benefit from each pursuing their own enterprises for now, there will soon be a need for convergence on the fundamentals of future plastics rules, such as permissible plastics types, hazards eliminations, recycled content minimums, environmental attributes, such as “compostable” or “biodegradable”, design for recyclability, usage bans, and reverse supply chain integration.

Without convergent, plastics industry stakeholders won’t find the market stability necessary to make any of these initiatives successful.


About the Author

Jonathan D. Cocker heads the Firm’s Environmental Practice Group in Canada and is an active member of firm Global Consumer Goods & Retail and Energy, Mining and Infrastructure groups. Mr. Cocker provides advice and representation to multinational companies on a variety of environment, health and safety matters, including product content, dangerous goods transportation, GHS, regulated wastes, consumer product and food safety, extended producer responsibilities and contaminated lands matters. He appears before both EHS tribunals and civil courts across Canada. Mr. Cocker is a frequent speaker and writer on EHS matters, an active participant on EHS issues in a number of national and international industry associations and the recent author of the first edition of The Environment and Climate Change Law Review (Canada chapter) and the upcoming Encyclopedia of Environmental Law (Chemicals chapter).

Making Producers Pay – From Stewardship to Innovative EPR Programs in Canada

, , ,

Written by Mark Youden and Maya Stano, Associate Lawyers at Gowling WLG

Product and packaging waste is increasingly drawing public attention across the globe. This stems, in part, from a growing awareness of massive plastic pollution accumulation zones in our oceans, government bans of single use plastics, China’s recent import ban on scrap plastics, and news of the Philippines wanting to return Canadian “recyclables.”  In this era, governments are increasingly turning to innovative waste management and diversion policies and laws.

To date, Canada has focused on two approaches for managing products and their packaging at end-of-life: (1) extended producer responsibility or “EPR”, and (2) product stewardship programs. For the most part, these programs (which cover various categories) fall under provincial jurisdiction.    

To varying degrees, these programs shift the end-of-life waste responsibility away from governments (and tax payers) and on to producers (e.g., brand owners, manufacturers and first importers).  Depending on the program, this responsibility includes reporting and funding (at least in part) the management of the waste created by their products.  

Stewardship versus EPR

Although often used interchangeably, there are key policy differences between product stewardship and EPR programs (as well as significant corresponding financial implications for companies). Generally speaking, EPR programs place responsibility (and costs) on product producers, whereas product stewardship programs generally rely on consumer-paid environmental fees or public funds. Although the emphasis in Canada has historically been on product stewardship programs, there is a growing shift towards transforming those initiatives to full-fledged EPR programs. Such EPR programs place full responsibility for designing, operating and financing diversion programs, and accountability for the program’s environmental performance, on producers.  The concept is intended to incentivize companies to not only bear responsibility for, but actually reduce, their product waste footprint (e.g., through recyclable product and packaging innovation).

Status of EPR Programs

Provincial Level

In 2014, British Columbia became the first jurisdiction in Canada to implement an EPR system making producers fully responsible for funding and managing curbside and drop-off recycling programs for packaging and printed paper. Under the province’s Environmental Management Act and Recycling Regulation, producers must recover 75% of the paper and packaging they produce, and face fines if they don’t achieve this target.

Full EPR programs have not yet been implemented in other provinces – some provinces do require producers to pay for part of their recycling, but none outside of BC require producers to manage the actual system. At the local level, municipalities often bear the burden of dealing with urban waste generation, and towns and cities are increasingly expressing support for full EPR implementation to help cover the costs of expensive recycling programs. For example, the City of Calgary recently passed a motion to push the province into looking into EPR programs. 

Similarly, in Ontario producers are required to pay for 50% of the recycling system, but municipalities are actively calling for a full EPR model. In 2016, Ontario passed a groundbreaking bill that instituted an EPR requirement for all product categories. The bill also sought to prevent producers from discharging their liabilities to a third party, thereby making them fully responsible. These efforts culminated in the adoption of several new laws, including the Waste Diversion Transition Act, 2016 (which includes payments to municipalities to cover their costs associated with the blue box recycling program), and the Resource Recovery and Circular Economy Act, 2016 (which led to the development of the Strategy for a Waste-Free Ontario: Building the Circular Economy).

Federal Level

At the federal level, the Canadian Council of Ministers of the Environment began taking action in the late 1990’s in regard to its waste reduction target of 50% of the product waste that is placed into the market. Since 2004, the CCME has published several reports, analyses, studies, tools and progress reports in regard to the Canada-wide Action Plan for Extended Producer Responsibility, with product packaging recognized as a priority in that plan.

International Level

EPR has a long history in Europe, where it has existed in varying forms since 1990. Sweden and Germany led the way by encouraging industries that made and sold products to be responsible for the waste stage of those products. EPR programs subsequently spread to other EU countries and beyond.

Challenges with recycling recently led to the EU’s approval of a law banning 10 types of single-use plastics by 2021 as part of its shift towards a circular economy (which aims to keep resources in use for as long as possible, extract the maximum value from them whilst in use, and recover and regenerate products and materials at the end of each service life). Canadian federal MP Nathan Cullen has recently introduced a private member’s bill, Bill C-429, the Zero Waste Packaging Act, which seeks to follow the EU lead.1 Stay tuned on the progress of those efforts as they evolve here in Canada.

The Spotlight on Product and Packaging Waste

A dispute between the Philippines and Canada has recently drawn attention on Canada’s product and packaging waste system.  In April 2019, the Philippines demanded that Canada take back shipping containers full of waste and recyclable plastics. Canada originally argued that it is not responsible for returning the waste that was shipped. This dispute, spanning over 5 years now, is complicated by obligations under international law (including the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal, 1992).  As threats from the Philippines President escalated in late April 2019, Canada offered to accept and pay for the return of close to 70 shipping containers.Those containers are now on their way back to Canada. 

This international dispute has placed the spotlight on the state of recycling in Canada (as many did not realize Canada ships its waste elsewhere).  This, coupled with the public criticism over the effectiveness of Canada’s recycling regime, could spark local governments to expedite implementation of waste reduction policy and full-EPR programs. 

In summary, EPR and product stewardship programs are here to stay and will increasingly impose significant requirements on product producers.  Our Gowling WLG team has extensive experience in the detailed requirements that must be followed to ensure legal compliance. Should you have any concerns or questions regarding your company’s product stewardship and EPR duties, please contact one of our knowledgeable team members.


1 https://www.parl.ca/DocumentViewer/en/42-1/bill/C-429/first-reading#enH123


NOT LEGAL ADVICE. Information made available on this website in any form is for information purposes only. It is not, and should not be taken as, legal advice. You should not rely on, or take or fail to take any action based upon this information. Never disregard professional legal advice or delay in seeking legal advice because of something you have read on this website. Gowling WLG professionals will be pleased to discuss resolutions to specific legal concerns you may have.

About the Authors

Mark Youden is an associate lawyer in Gowling WLG’s Vancouver office, practising in the firm’s Environmental and Indigenous Law groups. Mark is called to the bar in British Columbia, Alberta and Ontario and advises a wide range of clients on all aspects of environmental, Indigenous and regulatory law issues.

Prior to studying law, Mark obtained a Master of Science focused on biophysical interactions and the fate of contaminants in terrestrial and aquatic systems. He also worked as an environmental consultant for an international engineering firm.

Mark’s scientific expertise and multidisciplinary approach to the law help him provide clients with practical solutions to complex environmental and Indigenous law matters.

Maya Stano is a Vancouver-based Gowling WLG associate lawyer who practises natural resource, environmental and Indigenous law.

Maya has a wide range of legal experience assisting individuals, companies and Indigenous Nations and other levels of governments on natural resource projects, including mining, forestry, large and small scale hydro projects, oil and gas projects, and nuclear projects. Maya provides timely and effective advice at all stages of project life, from early planning and tenure applications, through construction, operations and final closure, decommissioning and reclamation. Maya’s services cover due diligence matters, permitting (including environmental assessments), land rights (including leases and other land access and tenure agreements), regulatory compliance, and engagement and agreement negotiations between First Nations, the Crown and proponents.

Maya also assists Indigenous Nations in various government-related matters, including drafting laws and bylaws, drafting and implementing trust instruments for sustainable long-term financial management, managing land use and rights on reserve, and working with land codes and other governance matters.

Maya studied law at the University of British Columbia, graduating with a specialization in environmental and natural resource Law. After graduation, Maya clerked at the Federal Court of Canada for the Honourable Mr. Justice John A. O’Keefe. Concurrently, she completed an LLM at the University of Ottawa, focusing on the legal implications associated with lifecycle management of metals.

Maya is also a professional geological engineer and previously worked on mining projects both domestically and abroad, as well as on contaminated sites across British Columbia, and on oil and gas projects in northern Alberta.

Waste Not, Want Not: Recycled vs. Recyclable

, , ,

Written by Calvin Lakhan, Ph.D, Faculty of Environmental Studies at York University

This past weekend, at a gathering with friends, the topic of recycling came up.

“Did you know that they can recycle cigarette butts now?”

Being known as the “garbage man” among my peers, eyes turned to me to confirm this seemingly revolutionary advancement in recycling.

I hesitated, knowing that my answer was about to make me a “Debbie Downer” and open a can of worms about what it really means to recycle something.

“No – cigarette butts cannot be recycled in conventional recycling systems” – I made sure to add the latter as a qualifier.

“But I heard about a program that takes back used cigarettes and turns it into new forms of plastic and compost!”

What my friend was referring to was the breakthrough program offered by Terracycle (read more about it here: https://www.terracycle.com/en-US/brigades/cigarette-waste-recycling).

And with a heavy heart, I launched into a lecture about the difference between something that can be recycled, versus something that is recyclable.

By the end, the disappointment in the room was palpable – I was the proverbial wet blanket that ruined the “feel good factor” of trying to do the right thing.

My feelings towards Terracycle and other similar organizations are heavily conflicted. On one hand, they are innovative, transformative and committed to finding new uses for problematic materials. The accolades they receive are well deserved, but I also think it creates a dangerous perception among the public about what items can (and should be) recycled.

Most materials can technically be recycled – be it cigarette butts, laminated coffee cups, chip bags etc. Given the resources, infrastructure, technology and time, we can find ways to re-purpose problematic materials.

It is in this space that organizations such as Terracycle thrive – they have forged literally dozens of partnerships with companies across the globe to successfully “recycle the unrecyclable”.

Win, win situation, right? Wrong.

While it may seem novel to turn ocean plastic into shoes, or chip bags into handbags, the hard truth is that this type of recycling cannot be readily replicated at scale. The processing technology involved is economically prohibitive, and really only available in jurisdictions in which the collection program is being offered.

The latter point is also why the environmental and economic impact of a decentralized logistics network is questionable – take back programs that ask consumers to ship things like coffee pods, chip bags, razors etc. hundreds of kilometers can be both inefficient and costly.

Going back to our cigarette butt example, there is no recycling facility in Canada (that I am aware of) that can economically recover the material… which is why it is so imperative that we distinguish between something that can be recycled, versus recyclability.

To me, the former is a technical question – does the technology exist to recycle a particular good? The latter however is a much more nuanced question that requires us to consider the economic, environmental and social impact of recycling activity.

As an example, 99.99% of people who work in waste will tell you that glass can be recycled, but I would bet that a significant portion of those people would question whether it should really be recycled (at least in a curbside collection system).

Why this matters is that the average consumer has difficulty differentiating between recycling and recyclability. Much like my well intentioned friends, once people hear that something can be recycled, they assume that to be a universal truth. When Keureg teamed up with Recycle BC to pilot a recycling program, people across the country thought that they could now put K-cups in their Blue Bin (which was never the case).

Perhaps a more insidious example of how this consumer confusion can result in catastrophe, is in the green washing of packaging. My social media feed is full of examples of CPG companies partnering with Terracycle (and others) to pilot new recycling programs. The dangers of this is that companies may be more concerned with the “optics” of recyclability, as opposed to developing products that can be sustainability managed at end of life. The key to a successful pilot is accountability and transparency – I don’t want a headline announcing a partnership, I want to know how much is being diverted, where it is being diverted and at what cost.

I want to impress upon the reader that this post is not about bashing Terracycle or any other company attempting to develop new ways to recycle problematic materials. Their work is critical in promoting consumer awareness, and has successfully married CPG companies and recyclers to work collaboratively.

However, we have to remember that recycling is only one of many tools we have to promote a circular system. Inordinately focusing our attention and resources on recycling may be at the expense of other, more sustainable options. Consumers have an intense appetite and interest in doing the right thing and keeping material out of landfills, but we have to be honest with both them and ourselves regarding the role recycling can play.

About the Author

Calvin LAKHAN, Ph.D, is currently co-investigator of the “Waste Wiki” project at York University (with Dr. Mark Winfield), a research project devoted to advancing understanding of waste management research and policy in Canada. He holds a Ph.D from the University of Waterloo/Wilfrid Laurier University joint Geography program, and degrees in economics (BA) and environmental economics (MEs) from York University. His research interests and expertise center around evaluating the efficacy of municipal recycling initiatives and identifying determinants of consumer recycling behavior. Calvin has worked as both a policy planner for the MOECC and as a consultant on projects for Stewardship Ontario, Multi Material Stewardship Manitoba, and Ontario Electronic Stewardship. Calvin currently sits on the editorial board for Advances in Recycling and Waste Management, and as a reviewer for Waste Management, Resources Conservation and Recycling and Journal of Environmental Management.

Cities and countries aim to slash plastic waste within a decade

, , , , ,

Written by Dr. Chelsea Rochman, Assistant Professor of Ecology and Evolutionary Biology, University of Toronto and Dr. Diane Orihel, Assistant Professor, School of Environmental Studies, Queen’s University

If all goes well, 2030 will be quite a special year.

Global and local community leaders from more than 170 countries have pledged to “significantly reduce” the amount of single-use plastic products by 2030. Success would result in significantly less plastic pollution entering our oceans, lakes and rivers.

Today, societies around the world have a love affair with disposable plastics. Just like some love stories, this one has an unhappy ending that results in plastic bags, straws and takeout containers strewn about the global environment.

As researchers who study the contamination and effects of plastic pollution on wildlife, it would be nice if by 2030 we no longer heard about plastics showing up in the stomachs of dead whales, littering the beaches of distant islands and contaminating tap water and seafood.

Plastic doesn’t belong on the beach. Shutterstock

It is time for some good news about the environment, including stories about how cities and countries are managing plastics and other waste materials in more sustainable ways, and how children will have cleaner beaches to play on.

No reason to wait

Scientists have known about plastic pollution in our oceans for more than four decades. It is pervasive in rivers, lakes and soils too. Plastic pollution knows no boundaries, with small bits of plastic found from the equator to the poles and even on the remote slopes of the French Pyrenees mountains.

Plastic waste damages ecosystems, smothers coral reefs and fills the bellies of sea life. In the absence of action, the amount of plastic waste produced globally is predicted to triple between 2015 and 2060, to between 155 and 265 million tonnes per year.

As a welcome response, global leaders have decided to act. At the UN Environment Assembly in Nairobi in March, environment ministers from around the world signed a voluntary commitment to make measurable reductions in single-use plastic products, including straws, shopping bags and other low-value plastic items that are sent to landfill after being used once.

Similar goals to deal with plastic pollution have been introduced by municipal, provincial, federal and regional governments across the globe. Non-profit organizations and industry leaders are making efforts to tackle the problem of plastic pollution. For example, Ocean Conservancy is uniting citizens and organizations around the world in cleanups to meet their goal of an ocean free of plastics by 2030, and Unilever has pledged to use 100 per cent recyclable packaging by 2025.

Canada joins the movement

Canada introduced the Ocean Plastics Charter at the G7 summit in 2018, committing nations to work with industry to make all plastics reusable, recyclable or recoverable by 2030. That means sending no plastic waste to landfill.

Vancouver aims to be a zero-waste city by 2040. Although the city has reduced the mass of waste going to landfill by 23 per cent since 2008, it still has a long way to go.

Ontario also has its sights on being waste-free by developing a circular economy, which means keeping materials in use for as long as possible. The province aims to cut the amount of waste sent to landfills in half by 2030, a reduction of 4.5 million tonnes, through reuse and recycling.

To propel Ontario into action, Ian Arthur, the member of the Ontario provincial parliament for Kingston and the Islands introduced a private member’s bill in March to eliminate Ontario’s use of non-recyclable single-use plastic products such as straws, coffee cups and plastic cutlery, which ultimately end up in landfills. These plastics do not feed into a circular economy.

In addition, school children in Ontario are working towards collecting 10,000 signatures on petitions to ban single-use plastics in the province.

Canadians would like to see more action against plastic waste. According to a recent poll, 90 per cent of Canadians were either very concerned or somewhat concerned about the environmental impact of plastic waste, and 82 per cent thought government should do more to reduce plastic waste.

Bye bye plastic waste

Our research, and the research of others, has found that single-use plastic products litter our beaches and coastlines, small pieces of plastics contaminate our Great Lakes and the Arctic Ocean, and microplastics are present in our sport fish and drinking water.

Ambitious global, regional and local collaborations are sorely needed to truly realize these goals. It’s time to commit to ending the love affair with disposable plastics.

Individual action does work. Quench your need for caffeine by using a reusable mug. Hydrate with water from a durable and refillable bottle. Purchase groceries that come in containers that can be reused or recycled. Plan your kid’s birthday party and your work meetings without using disposable single-use plastics.

A decade of positive habits could lead to a future where plastic is no longer waste, but valued as a material that can be reused and recycled — shifting our current paradigm to a more sustainable one that lasts far beyond 2030.



This article is republished from The Conversation under a Creative Commons license. Read the original article.

About the Authors

Dr. Chelsea Rochman is an Assistant Professor of Ecology and Evolutionary Biology, University of Toronto. Previously, she was a David H. Smith Postdoctoral Fellow at the Aquatic Health Program at the University of California, Davis. Dr. Rochman received her PhD in a joint program with San Diego State University and UC Davis in Ecology.

Dr. Diane Orihel is an Assistant Professor, School of Environmental Studies, Queen’s University, Ontario. Dr. Orihel investigates human impacts on aquatic ecosystems through large-scale, multidisciplinary and collaborative research programs. She holds a B.Sc. (Honours) in Ecology and Environmental Biology (University of British Columbia), Masters in Natural Resource Management (University of Manitoba), a PhD in Ecology (University of Alberta). She was a Banting and Liber Ero postdoctoral fellow at the University of Ottawa, and now holds the position of Queen’s National Scholar in Aquatic Ecotoxicology in the Department of Biology and School of Environmental Studies at Queen’s University.

Extended Producer Responsibility for Textiles? Not So Fast…..

, ,

Written by Calvin Lakhan, Ph.D, Faculty of Environmental Studies at York University

In the Ontario Environment Ministry’s Reducing Litter and Waste in Our Communities Discussion Paper, the question was posed:

What additional materials do you think should be managed through producer responsibility to maximize diversion?

Stakeholders from across the used textile collection sector highlighted textiles as being a potential candidate for extended producer responsibility (EPR).

Given the hundreds of thousands of tonnes of used textiles being generated annually, it seems only logical that producers should be tasked with the physical and financial responsibility for managing these items at their end of life.   

However, when the university was asked to take a position supporting a producer responsibility scheme for textiles, I hesitated.

I want to preface this by saying that I feel that producer responsibility has a place in promoting a circular economy – In theory,  EPR is supposed to encourage design for the environment (have producers use more sustainable materials), promote positive environmental outcomes (increased diversion), and contain costs (incentive to minimize costs associated with end of life management).

Would EPR for textiles achieve these desired outcomes?

Before answering this, let’s remember what EPR is actually designed to do –  EPR is a cost recovery tool to finance the operational and administrative expenses associated with managing a material at its end of life.

Steward fees (what industry pays to finance a producer responsibility program) is based on net cost of material management. As an example, the fees associated with Blue Box materials are in direct proportion to the system costs attributable to said material. For packaging like plastics film and polystyrene, producers pay an extremely high steward “fee” because the net cost of material management is in excess of $1500 a tonne. Conversely, aluminum producers do not pay any fees, as they have a negative net cost (the revenue received supersedes the cost of material management).

Why this matters for textiles is that at present, net cost of material management for textiles is negative. Due to the high value of used textiles as a commodity, numerous organizations from across the for profit/not for profit sector collect used textiles, using a range of collection mediums.

Textiles, unlike most other waste streams, are being collected by third party operators, even in the absence of material specific legislation. The value of used textiles results in a self-sustaining collection network that ultimately negates the need for cost recovery schemes such as extended producer responsibility.

There is even an argument to be made that the low diversion rates for textiles is attributable to a lack of opportunity and awareness among households (as opposed to a lack of organizations willing to collect the material).

At present, there are no *net* costs to recover for used textile collectors, and EPR becomes moot.

Where this situation may change is in situations where used textile collectors begins to incur operational expenses that exceed the revenue that they receive from the material. This could be attributable to any number of things – management of low grade materials that have minimal value at end of life, a decrease in commodity value (due to either increasing supply of used textiles, or decreases in demand), and the development of domestic processing/recycling capacity that require infrastructural investments.  In these instances, EPR could be seen as a potential cost recovery tool.

Practical challenges to implementing a producer responsibility scheme for textiles

If EPR is adopted at a provincial (or national) scale, we must be cognizant of the enormous administrative challenges of developing such a program. The creation of an IFO/ISP, calculating and collecting fees, disbursing fees to service providers etc. are all necessary steps when developing a producer responsibility program.

Furthermore, the technical challenges of being able to readily quantify end of life material management costs, and then allocating those costs to specific stewards will require a fundamental overhaul in how we collect and interpret data related to textile generation/recovery. Of note, all EPR programs differentiate fees based on product or material type (i.e. a fee for a television is greater than the fee for a cell phone because of the differences in end of life management costs). This process would need to be replicated for all textile types being sold into the market in order to correctly allocate costs.

Simply put, formal programs for textile diversion are in their infancy, and we are still a long way from having the understanding to conceptualize what a producer responsibility scheme might look like. To provide context, Ontario’s Blue Box, which has had a (partial) producer responsibility scheme for the better part of two decades, continues to struggle with how to reconcile the opposing interests of both stewards and municipalities. It is a highly contentious process that is fraught with difficulty as stakeholders try to determine what is fair and reasonable.

Be careful what you wish for

While most stakeholders involved in used textile collection advocate for EPR, it is important to keep in mind that under a 100% EPR model, stewards will assume ownership of all recovered materials. While yes, they will be physically and financially responsible for all end of life material, they will also be entitled to the revenue received from the sale of that material.  

At present, it is unclear what the implications of a 100% producer responsibility model would be for used textile collectors, particularly in the charitable/not for profit space. Stewards may ultimately decide to rely on the existing collection networks in place (as opposed to doing it themselves), and designate certain organizations as a preferred service provider. It is entirely possible that charities/not for profits would then compete with other collectors to be a service provider, essentially reverting to a “bid/tender” process.

What should we do?

While the future of textile legislation, and what role EPR should play remains unclear, the key to developing a sustainable, circular textile market lies in flexible, non-prescriptive legislation. A necessary first step is to designate textiles as a priority material, but leave it up to the market to organically develop solutions to keep material out of landfill, and maximize the economic, environmental and social impact of recovery. Rapid changes in textile end markets, the types and quantities of textiles being generated, and technologies to recycle/reprocess textiles requires legislation that can grow and adapt to reflect the conditions of an evolving market place.

Note: This article reflects the sole opinion of the author. He does not speak on behalf of the university or any of its stakeholders.


About the Author

Calvin LAKHAN, Ph.D, is currently co-investigator of the “Waste Wiki” project at York University (with Dr. Mark Winfield), a research project devoted to advancing understanding of waste management research and policy in Canada. He holds a Ph.D from the University of Waterloo/Wilfrid Laurier University joint Geography program, and degrees in economics (BA) and environmental economics (MEs) from York University. His research interests and expertise center around evaluating the efficacy of municipal recycling initiatives and identifying determinants of consumer recycling behavior. Calvin has worked as both a policy planner for the MOECC and as a consultant on projects for Stewardship Ontario, Multi Material Stewardship Manitoba, and Ontario Electronic Stewardship. Calvin currently sits on the editorial board for Advances in Recycling and Waste Management, and as a reviewer for Waste Management, Resources Conservation and Recycling and Journal of Environmental Management