Lithium Batteries – Rethink, Recycle

, , ,

Written by Zachary Gray, B.Eng.Biosci., Chemical Engineering & Bioengineering

Electricity is in, and fuel is out — The Dutch Royal Shell’s 50-year plan is in motion. Much to longtime shareholder’s chagrin, the 112-year-old global behemoth is pivoting their business model away from fossil fuels in the decades to come in favor of more sustainable forms of energy, including wind, solar, and hydrogen.

The Dutch Royal Shell transition is not limited to ethereal boardroom speak, placating the dry martini-sipping corporate climate change activists, but aligns with the tenets of the Paris Accord and emerging trends in consumer behavior: more electric vehicles and charging stations, less crude oil. Indeed Canadians with ambivalent, and often geopolitically divergent attitudes towards their energy sector are purchasing electric vehicles (“EVs”) at an accelerating pace: EV sales increased 125% from 2017 to 2018, putting an additional 100,000 on our roadways.

The problem to avoid is exchanging one environmental sin for another. There is a greater understanding among the general road-faring population that the fuel they are pumping into their cars, on the way to doing more important things with their time, combusts, adding to the greenhouse gases accumulating in the atmosphere. Meanwhile, charging one’s EV adds a degree of separation between drivers and their energy source.

Generally, driving an EV in Ontario, where 93% of the province’s energy comes from carbon-free sources, is far better for the environment than the combustion box on wheels sitting in the queue at the Shell station. Not so much in Kentucky, where 92% of the state’s energy comes from low-energy-density coal; or worse: Illinois, Ohio, Indiana, or Texas, where they burn far more to keep the lights on – or, EVs cruising along their streets. An EV’s positive environmental impact is only as good as its energy supply and battery.

Often, the EV’s greatest sin is its battery. In a study comparing Tesla’s Model S alongside a comparable internal combustion engine vehicle, the former’s manufacturing process generated 15% more greenhouse gas (“GHG”) emissions. Despair not, however, the same study acknowledged that a Tesla generally rack up fewer GHGs over its lifespan compared to the latter.

For context, Tesla’s position is far better than the first generation of Toyota’s hybrid vehicle, the 1997 Prius. Between mining nickel for its catalysts in Northern Ontario and the spiderweb of trans-continental shipping bringing together the car’s disparate components across Toyota’s decentralized manufacturing sites, the first Prius’s GHG emissions over the course of lifetime dwarfed those of military-grade Hummers – which, some readers may be surprised to learn, are not known for their fuel economy. Tesla’s cathode and electrolyte are its central issues.

Lithium-based Batteries

There are three components to EV’s lithium-based batteries: the anode, made from graphite; the lithium electrolyte; and cathode, often a mixture of nickel, aluminum, and manganese cobalt. Tesla’s cathodes, a combination of nickel, cobalt, and aluminum, are the main environmental culprit; the lithium is salt on the wound.

Analysts estimate that Argentia, Bolivia, and Chile hold 15% of the world’s lithium reserves. Abundance, however, is not the problem: water usage and isolation are. Clean water is scarce high in the Andes, and mining operations use immense volumes in their salt brine ponds to separate the lithium from magnesium and potassium that are also present. Lithium brine ponds now litter the famous Salar de Uyuni salt flats. While TIME magazine may celebrate the wealth potential, and the relative cleanliness of lithium mining throughout these South American countries, consumers should remain vigilant to ensure extractors are not given carte blanch over the region’s resources – besides, who gets a medal for not placing last?

Lithium Mining Operation

For some perspective, the Guangdong province in China used mining to further its economy, much like the three South American nations are doing, feeding the world’s growing appetite for electronics with its vast supply of heavy metals – perfect for batteries and processors. Now, it costs $29/kg to remediate soil in the region. Nor do few publications outside of Canada’s right-wing press celebrate the economic value that the Oil Sands mines deliver to Albertans.

There is also the social impact to consider outside of the environmental damage brought on the world’s growing appetite for electronics and the batteries that keep them charged.

The Democratic Republic of Congo is one of the largest global producers of cobalt, a critical element in Tesla’s cathodes. There are also an estimated 35,000 child laborers working in the Congo’s cobalt mines. At $83,000 per metric tonne, the high commodity prices for this scarce metal are incentivizing the less than stable Congolese government to turn a blind eye to the increasing rate of child enslavement in their country. Meanwhile, citizens in developed nations enjoy faster charging times for their phones and better performance in their EVs, for which they can thank cobalt’s presence. 

That’s how it is: Fossil fuel reliance diminishes as society increasingly coalesces around electronics and sustainable forms of energy. Metals such as lithium and cobalt, play a critical part in the transition’s material infrastructure. However controversial, mining provides the initial access to these vital materials.  Consumers can take heart knowing that battery components, while not non-renewable, are recyclable – unlike the proceeding technology. The rare earth elements can feed a closed-loop supply chain as they enter circulation while robust recycling technologies ensure their place within it.

The importance of battery recycling

Tesla ensured that recycling as part of its battery’s supply chain. The company recycles 60% of spent cells from its cars, reuses a further 10%, and landfills the rest due to technical difficulties. They use Kinsbursky Brothers in North America and Umicore in Europe. Both of these recyclers use traditional furnace techniques called pyrometallurgy to process the spent batteries.

Four high-level events place during the pyrometallurgical process; they are:

  1. Preparing the furnace load, including the battery components and coke;
  2. Treating the off-gas, filtering the batteries’ vaporized plastic parts, before discharging to the atmosphere;
  3. Removing slag from the kiln, including aluminum, silicon, and iron;
  4. Completing the smelting process.

The resultant product is a copper, lithium, cobalt, and nickel alloy, representing 40% of the batteries contents, while The treated off-gas and slag account for the remaining 60%. For reference, a Model S has 7,100 battery cells, weighing 540 kg, meaning that the heating-based approach recovers ~220 kg of valuable cathodic materials, representing approximately 80-85% of the original amount, for the industry’s growing closed-loop supply chain. 

Altogether, the pyrometallurgical recycling of lithium-ion batteries reduces GHG emissions by 70% over using new resources, further lowering the environmental impact for the next generation of EVs.

Umicore’s process can handle 7,000 metric tonnes per year, equivalent to 35,000 EV batteries. Right now, the company is focusing on better serving smaller-scale electronics and pivoting their technical model towards less-energy intensive forms of battery recycling. Fully embracing hydrometallurgical techniques, the process extracting metal ions from aqueous solutions and forming salts, is the new frontier in lithium battery recycling. One Canadian company stands out in the emerging technical group: Li-Cycle.

Li-Cycle Corporation

The Mississauga-based Li-Cycle Corporation is piloting its two-step, closed-loop recycling technology in Southern Ontario. First, the “Spoke” mechanically reduces the size of the battery’s components, leading to the “Hub,” which leverages hydrometallurgical technologies to yield high-value salts. In addition to emitting few GHGs and expending little solid waste, the company also treats and reuses its water and acid. Encouragingly, the company achieved a >90% recovery rate for critical metals during their pilot-scale operations.

Li-Cycle Technology™ is a closed loop, processing technology that recycles lithium-ion batteries. The technology recovers 80-100% of all materials found in lithium-ion batteries.

Li-Cycle’s technology minimizes energy usage and operational inputs while outperforming competitor’s return. Going forward, the company will separate the two components business units, better serving regional markets: Multiple Spokes, each processing 5,000 tonnes of used batteries per year, will supply a 15-20,000 tonne Hub. A constellation of Li-Cycle’s units would increase the availability of critical metals from other electronics, such as cell phones, for the rapidly expanding EV market.

Concluding remarks

Tesla recently announced its concern about the impending shortage of metals critical to their batteries’ chemistry. In the future, companies such as Canada’s Li-Cycle and Umicore will be able to mediate discrepancies in the EV supply chain. Used batteries languishing in the dump are harmful to the environment and damage the growing, technical infrastructure around recycling rare earth metals. Mining brings the batteries’ minerals into circulation while recycling keeps them in use.

Recycling will be an integral part of the EVs’ industrial arc as they proliferate in usage, while the energy paradigm continues to shift from fossil fuels to sustainable forms of electricity and new generations of battery technology minimize the use of precious minerals.


About the Author

Zachary Gray graduated from McMaster University with a bachelor’s degree in Chemical Engineering & Bioengineering.  He has worked with several early-stage cleantech and agri-industrial companies since completing his studies, while remaining an active member of his community.  He is enthusiastic about topics that combine innovation, entrepreneurism, and social impact.

Making the Case for a Zero Plastic Waste Economy: Canada Moves to Ban Single-Use Plastics in an Effort to Reduce Plastic Pollution

, , ,

Written by Selina Lee-Andersen, McCarthy Tetrault

There is no doubt that plastics provide unparalleled functionality and durability across a range of products in our everyday lives. The production and use of plastics is growing faster than any other material due to their many practical uses. However, certain characteristics that make plastics so valuable can also create challenges for their end-of-life waste management. In particular, the low costs of producing and disposing of plastics have increased the amount of disposable plastic products and packaging entering the consumer market. According to the Canadian Council of Ministers of the Environment (CCME), over half of these disposable plastic products and packaging are designed to be used once and thrown away. CCME reports that an estimated 95% of the material value of plastic packaging (or between $100 and $150 billion dollars annually) is lost to the global economy after only a single use.

In recent years, plastic pollution has emerged as a critical environmental issue, one that must be addressed globally. To reduce plastic waste in Canada, the federal government announced in June 2019 that it will ban single-use plastics as early as 2021. The ban is expected to include items such as plastic bags, straws, cutlery, plates and stir sticks. The federal government will also work together with the provinces and territories to introduce Extended Producer Responsibility (EPR) programs, which would seek to establish standards and targets for companies that manufacture plastic products or sell items with plastic packaging.

The federal government has indicated that these measures will align with similar actions being taken in the European Union and other countries. In addition, these initiatives complement Canada’s adoption of the Ocean Plastics Charter in June 2018, which lays the groundwork for ensuring that plastics are designed for reuse and recycling. In addition, the federal government’s efforts to reduce plastic pollution includes ongoing work through the CCME to develop an action plan to implement the Canada-wide 2018 Strategy on Zero Plastic Waste.

Policy Initiatives to Reduce Plastic Pollution

The specific policy initiatives announced by the federal government include:

  • Banning harmful single-use plastics as early as 2021 under theCanadian Environmental Protection Act and taking other steps to reduce plastic waste, where supported by scientific evidence and when warranted – and taking other steps to reduce plastic waste. The ban would cover single-use plastic products and packaging (e.g. shopping bags, straws, cutlery, plates, and stir sticks); the specific products and measures included in the ban will be determined once a State of the Science assessment on plastic pollution in the environment has been completed. The assessment will include a peer review, public consultations, and socio-economic considerations. Additional regulatory actions could include requiring products to contain a set amount of recycled content, or be capable of being recycled or repaired.
  • Ensuring that companies that manufacture plastic products or sell items with plastic packaging are responsible for managing the collection and recycling of their plastic waste. EPR programs are recognized as an effective mechanism to support the creation of a circular economy. Under an EPR program, companies making products are responsible for the end-of-life management of their products and packaging. Through the CCME, the federal government will work with provinces and territories to support the development of consistent EPR programs across the country. This will include setting targets for plastics collection, recycling, and recycled content requirements.
  • Working with industry to prevent and retrieve abandoned, lost, or discarded fishing gear, known as ghost fishing gear – a major contributor to marine plastic debris. The federal government will work with stakeholders through a new Sustainable Fisheries Solutions and Retrieval Support Contribution Program. In particular, the federal government will support fish harvesters to acquire new gear technologies to reduce gear loss, and take actions to support ghost gear retrieval and responsible disposal. In addition, the federal government will seek to reduce the impacts of ghost fishing gear in Canadian aquatic ecosystems. It is important to note that a significant amount of plastic in the oceans is comprised of fishing nets. In a study by the Ocean Cleanup Foundation that was published in 2018, scientists found that at least 46% of the plastic in the Great Pacific Garbage Patch comes from fishing nets, while miscellaneous discarded fishing gear makes up the majority of the rest.
  • Investing in new Canadian technologies. Through the Canadian Plastics Innovation Challenge, the federal government is helping small businesses across the country find new ways to reduce plastic waste and turn waste into valuable resources supporting a circular economy. Seven challenges have been launched so far, providing over $10 million dollars to 18 Canadian small- and medium-sized enterprises. These businesses are working to reduce plastic waste from food packaging, construction waste, marine vessels, and fishing gear. They are also improving plastic recycling through artificial intelligence and refining technologies for bioplastics.
  • Mobilizing international support to address plastic pollution. At the 2018 G7 meeting in Charlevoix, Canada launched the Ocean Plastics Charter, which outlines actions to eradicate plastic pollution in order to address the impacts of marine litter on the health and sustainability of the oceans, coastal communities, and ecosystems. As of July 2019, the Charter has been endorsed by 21 governments and 63 businesses and organizations. To assist developing countries in reducing marine litter, the federal government is contributing $100 million to help developing countries prevent plastic waste from entering the oceans, address plastic waste on shorelines, and better manage existing plastic resources. This includes $65 million through the World Bank, $6 million to strengthen innovative private-public partnerships through the World Economic Forum’s Global Plastic Action Partnership, and $20 million to help implement the G7 Innovation Challenge to Address Marine Plastic Litter.
  • Reducing plastic waste from federal operations. The federal government is strengthening policies, requirements, and guidelines that promote sustainable procurement practices, and has committed to divert at least 75% of plastic waste from federal operations by 2030.
  • Reducing plastic microbeads in freshwater marine ecosystems. To reduce the amount of plastic microbeads entering Canadian freshwater and marine ecosystems, Canada prohibited the manufacture and import of all toiletries that contain plastic microbeads (such as bath and body products) as of July 1, 2018. A complete ban came into force July 1, 2019.
  • Supporting community-led action and citizen-science activities. The federal government has committed $1.5 million in 2019 for organizations to start new plastics projects that mobilize and engage citizens. This funding is designed to support community-led action through education, outreach, and citizen science, and support concrete actions through community cleanups and demonstrations to reduce plastic waste.
  • Launching Canada’s Plastics Science Agenda. The federal government will accelerate research into the life cycle of plastics and on the impacts of plastics pollution on humans, wildlife, and the environment. This agenda is aimed at supporting evidence-based decision-making and innovative approaches to sustainable plastics production, recycling, and recovery. Canada’s Plastics Science Agenda will also identify priority areas for multi-sector research partnerships to help achieve Canada’s zero plastic waste goals.

Economic Study of the Canadian Plastic Industry, Markets and Waste

In July 2018, Environment and Climate Change Canada (ECCC) commissioned a study to provide insights into the entire plastics value chain in Canada, from raw material production and products manufacturing to use and end-of-life. In June 2019, Deloitte and Cheminfo Services Inc. delivered its report to ECCC – the Economic Study of the Canadian Plastic Industry, Markets and Waste (the Report).  Highlights of the Report are set out below.

The scope of the Report encompasses most plastics types used across all key sectors. The Report’s authors found that with total sales of approximately $35 billion, plastic resin and plastic product manufacturing in Canada accounts for more than 5% of sales in the Canadian manufacturing sector. The sector employs approximately 93,000 people across 1,932 establishments. In Canada, plastic products are in demand in most sectors of the economy, with approximately 4,667 kilotonnes (kt) of plastics introduced into the domestic market on an annual basis. The packaging, construction and automotive sectors account for 69% of plastic end-use.

In terms of the life cycle of plastics in Canada, the Report notes that it is mostly linear in nature, with an estimated 9% of plastic waste recycled, 4% incinerated with energy recovery, 86% landfilled, and 1% leaked into the environment in 2016. The main generators of plastic waste in Canada are:

  • packaging (43%);
  • automotive (9%);
  • textiles (7%);
  • electrical and electronic equipment (7%); and
  • construction (5%).

The Report found that plastics materials that were not recovered (i.e. 2,824 kt of resins sent to landfill or leaked into the environment) represented a lost opportunity of $7.8 billion for Canada in 2016, based on the value of virgin resin material. By 2030, the Report estimates that Canada’s lost opportunity in respect of unrecovered plastics could rise to $11.1 billion based on a business-as-usual scenario. Given forecasted trends in waste streams and economic drivers, the Report indicates that the linear profile of the Canadian plastics economy will not improve under a business-as-usual situation. The Report concluded that:

  • Given current market prices, structures, business models and the low cost of disposal, there is limited direct economic incentive for plastics recycling and value recovery in Canada. Primary (i.e. virgin resin production) and secondary (i.e. recycled) plastics compete against each other in the same market, based on price and quality of the resins. This competition is difficult for the recycling industry, which has to deal not only with prices, but also with quality issues as a result of uneven feedstock composition. While secondary plastics producers enjoy lower upfront investment than their counterparts in the primary market, they face greater financial exposure during periods of low oil prices (which bring down the price for virgin resins) because their cost structure is more labour intensive. Key barriers to the recovery of plastics include a combination of factors including low diversion rates (only 25% of all plastics discarded are collected for diversion), process losses in the sorting (e.g. shredded residues containing plastic are sent to landfill) and reprocessing stages, and the near absence of high volume recovery options for hard-to-recycle plastics (such as plastics waste coming from the automotive sector).
  • A zero plastic economy would deliver significant benefits to Canada. The Report’s authors modeled a 2030 scenario to examine the potential costs and benefits of achieving zero plastics waste. This scenario used a 90% landfill diversion rate as a proxy for zero plastic waste and assumed that: (i) plastics production and end use applications increased, but followed the same patterns as in 2016; (ii) mechanical recycling was quadrupled from its business-as-usual level; (iii) chemical recycling was significantly scaled up, taking into account readiness levels and associated learning curves; and (iv) energy from waste was leveraged to deal with the remaining volumes and hard-to-recycle plastics. An analysis by the authors demonstrated that the 2030 scenario would result in benefits including $500 million of annual costs avoided, 42,000 direct and indirect jobs created, and annual greenhouse gas emission savings of 1.8 Mt of carbon dioxide equivalent.  
  • The analysis indicates that zero plastic waste cannot be achieved without concurrent, strategic interventions by government, industry stakeholders and the public across each stage of the plastic lifecycle and targeted at sectors. According to the Report, achieving 90% plastic waste recovery will require significant investment to diversify and expand the capacity of current value recovery options including mechanical recycling. Chemical recycling, and waste-to-energy. The Report also notes that significant improvements to current plastic waste diversion rates will be required. In particular, a systematic approach across sectors will be needed because no single public or private sector action can shift the system.
  • The Report identifies the following five sets of interventions (including policies, measures and calls-to-action) to achieve zero plastic waste in Canada:
    1. Creating viable, domestic, secondary end-markets. This includes:
      • Creating stable, predictable demand for recycled plastics that is separate from virgin markets (e.g. requirements for recycled content, taxes/fees on virgin resins).
      • Improving the quality of recovered plastics at both the point of collection and in materials processing.
      • Improving access to domestic supply of recycled content.
      • Supporting innovation in product designs and uses for secondary plastics.
    2. Getting everybody onboard to collect all plastics. This includes:
      • Creating sector-specific requirements for collection (e.g. extended producer responsibility, performance agreements).
      • Restricting disposal (e.g. landfill taxes or bans).
      • Requiring/incentivizing collection (e.g. industry targets, deposit refund).
      • Developing more consistent requirements and rules across Canada (e.g. common curbside recycling).
      • Improving public information on collection and recyclability.
    3. Supporting and expanding all value-recovery options. This includes:
      • Supporting development of innovative value-recovery options, such as advanced mechanical and chemical recycling.
      • Focusing primarily on improving mechanical recycling.
      • Increasing the ease and speed at which new value recovery facilities can be developed by removing policy barriers and investing in innovation.
    4. Increasing efficiency throughout the value chain. This includes:
      • Facilitating collection and value-recovery by creating requirements for the reusability and recyclability of product design (e.g. standards and public procurement).
      • Improving performance by investing in sorting and separation.
      • Educating and engaging actors and consumers throughout the value chain.
    5. Extending plastics lifetime to reduce and delay waste generation. This includes leveraging opportunities to extend the lifetime of durable goods, which account for approximately 51% of total plastics waste, but have a very low recycling rate (2%) compared to that of non-durable goods (15%). In addition, the Report recommends introducing measures that contribute to increased reuse, repair and remanufacturing such as standard requirements for reparability or reusability, and tax exemptions to reduce and delay waste generation from durable goods in Canada.

In order to achieve zero plastic waste, radical changes will be required across the life cycle of plastic products. This includes not only changes in consumer behaviour, but also a significant increase in the number of recycling facilities in Canada, investments in recycling technology and the need for innovative government policies such as landfill taxes or product standards. As noted above, there is no single public or private sector action that can shift the system. Taking into consideration international benchmarks from ten European jurisdictions as well as US and Australian case studies, the Report’s authors note that a systemic approach is needed that is supp

This article has been republished with the permission of the author. It was originally posted on the McCarthy Tertrault Canadian Environmental Perspectives Blog.


About the Author

Selina Lee-Andersen is a partner in our Vancouver office and a member of the firm’s Environmental, Regulatory and Aboriginal Group, Energy & Mining Group, Retail and Consumer Markets Group, Defence Initiative and Asia Group. Recognized for her in-depth knowledge and range of experience, her practice focuses primarily in the areas of environmental law, corporate/commercial law, regulatory law, compliance, and Aboriginal issues in the energy and natural resource sectors.